999 resultados para Lead germanate glasses
Resumo:
The variation of normalized electrical resistivity in the system of glasses Ge15Te85-xSnx with (1 <= x <= 5) has been studied as a function of high pressure for pressures up to 9.5 GPa. It is found that with the increase in pressure, the resistivity decreases initially and shows an abrupt fall at a particular pressure, indicating the phase transition from semiconductor to near metallic at these pressures, which lie in the range 1.5-2.5 GPa, and then continues being metallic up to 9.5 GPa. This transition pressure is seen to decrease with the increase in the percentage content of tin due to increasing metallicity of tin. The semiconductor to near metallic transition is exactly reversible and may have its origin in a reduction of the band gap due to high pressure.
Resumo:
The highly complex structure-property interrelationship in the lead-free piezoelectric (x) Na1/2Bi1/2TiO3 - (1 - x) BaTiO3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x = 0.80, i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x < 0.8) to a long-period modulated tetragonal phase (for x > 0.80). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes Bellaiche and Iniguez, Phys. Rev. B 88, 014104 ( 2013); Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013)].
Resumo:
Eu+3 was incorporated into the lattice of a lead-free ferroelectric Na1/2Bi1/2TiO3 (NBT) as per the nominal formula Na0.5Bi0.5-xEuxTiO3. This system was investigated with regard to the Eu+3 photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main D-5(0)-> F-7(0) line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu+3 luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom. (C) 2015 AIP Publishing LLC.
Resumo:
Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library(TM) using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 mu M and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate current-collectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silica-gel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of similar to 200 F and similar to 300 F, energy densities of similar to 1.9 Wh kg(-1) and similar to 2.5 Wh kg(-1) and power densities of similar to 2 kW kg(-1) and similar to 0.8 kW kg(-1), respectively, having faradaic-efficiency values of similar to 90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about similar to 4 US$/Wh as compared to similar to 20 US$/Wh for commercially available ultracapacitors.
Resumo:
This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.
Resumo:
Glass formation has been examined in the system 15PbO.xPbCl(2).(85-x)PbBr2 (where 0 <= x <= 25)where the PbO concentration is kept constant while PbCl2 and PbBr2 concentrations are varied. The glasses have been examined using thermal and spectroscopic techniques. T-8, Delta C-p, refractive index, optical basicity have been found to remain unaffected by the composition which is a curious feature of these glasses. It is found that there is a wide infrared window available for use in the investigated glasses. The IR window extends from 1000 to 1500 cm(-1) and in glasses where PbCl2 is less than 20 mol%, the window extends up to 2260 cm(-1). X-ray photoelectron spectra (XPS) revealed that the 4f(5/2) and 4f(7/2) peaks due to f-level transitions have a constant difference in energies, but with energy and FWHM values that varying sensitively and systematically with composition. The observations are discussed and suitable explanations are provided.
Resumo:
Conductivity measurements have been made on x V O-2(5) - (100-x) 0.5 Na2O + 0.5 B2O3] (where 10 a parts per thousand currency sign x a parts per thousand currency sign 50) glasses prepared by using microwave method. DC conductivity (sigma) measurements exhibit temperature-and compositional-dependent trends. It has been found that conductivity in these glasses changes from the predominantly `ionic' to predominantly `electronic' depending upon the chemical composition. The dc conductivity passes through a deep minimum, which is attributed to network disruption. Also, this nonlinear variation in sigma (dc) and activation energy can be interpreted using ion-polaron correlation effect. Electron paramagnetic resonance (EPR) and impedance spectroscopic techniques have been used to elucidate the nature of conduction mechanism. The EPR spectra reveals, in least modified (25 Na2O mol%) glasses, conduction is due to the transfer of electrons via aliovalent vanadium sites, while in highly modified (45 Na2O mol%) glasses Na+ ion transport dominates the electrical conduction. For highly modified glasses, frequency-dependent conductivity has been analysed using electrical modulus formalism and the observations have been discussed.
Resumo:
Classical models are not successful in describing discharge characteristics of a lead-acid battery when the current density is varied over a wide range. A model is developed in this work to overcome this lacuna by introducing into the standard models two mechanisms that have not been used earlier. Lead sulfate particles nucleate and grow on active materials of electrodes during discharge, resulting in coverage of active area. Increasing rate of discharge builds supersaturation of lead sulfate rapidly, and causes increased extents of nucleation and coverage. Electrodes behave almost like an insulator due to deposition of lead sulfate when active materials are converted to a critical extent, and this can stop discharge process. Influence of this mechanism is also rate dependent. The new model developed is tested against data on polarization behavior, and capacity drawn as a function of current. The model successfully predicts both polarization curves and Peukert behavior. The model is used to predict charge that can be drawn at a current after partial discharge at a different current. Model suggests that altering nucleation behavior can be useful in enhancing capacity available for discharge. (C) 2015 The Electrochemical Society.
Resumo:
Impedance spectroscopic studies on modified phospho-vanadate glasses containing SO42- ions have been carried out over wide range of frequency. Modulated DSC studies suggest that the addition of alkali salt makes the glass less rigid and more fragile. The frequency dependent impedance data has been used to calculate d.c conductivity and activation energies. These values are comparable with the other ionic liquids. The conductivity and relaxation phenomenon was rationalized using universal a.c conductivity power law and modulus formalism. The activation energies for relaxation mechanism was also determined using imaginary parts of electrical modulus peaks which were close to those of the d.c conductivity implying the involvement of similar energy barriers in both the processes. Kohlrausch-William-Watts (KWW) stretched exponent beta, is temperature insensitive and power law (s) exponent is temperature dependent. The enhanced conductivity in these glasses is attributed to the depolymerised structure in which migration of Na+ ions proceeds in an expanded network comprising SO42- ions in the interstitials. The effect of structure on activation energy is well supported by abinitio DFT computations. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The dependence of shear yield strain, the activation energy and volume of shear transformation zone on the glass transition temperature was investigated through the analysis of statistical distributions of the first pop-in events during spherical indentation of four different thin film metallic glasses. Only the Cu-Zr metallic glass exhibits a bimodal distribution of the first pop-in loads, whereas W-Ru-B, Zr-Cu-Ni-Al and La-Co-Al metallic glasses show an unimodal distribution. Results show that shear yield strain and activation energy of shear transformation zone decrease whereas the volume of shear transformation zone increases with increasing homologous temperature, indicating that it is the activation energy rather than the volume of shear transformation zone that controls shear yield strain. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Heterophase structures in lead-free perovskite-type ferroelectric solid solutions of (1 - z)(Na0.5Bi0.5)TiO3 - zBaTiO(3) are analysed for a few critical compositions near the morphotropic phase boundary (z = 0.05-0.07). Examples of the phase coexistence and elastic matching of the phases from different symmetry groups are considered to find optimum volume fractions of specific domain types and coexisting phases at the complete stress relief in two-phase samples. Some interrelations between these volume fractions are described using variants of the domain arrangement at changes in the composition and unit-cell parameters. The evaluated room-temperature volume fractions of the ferroelectric monoclinic (Cm symmetry) and tetragonal (P4mm symmetry) phases near the morphotropic phase boundary are in agreement with experimental data.
Resumo:
The complexity associated with local structures continues to pose challenges with regard to the understanding of the structure-property relationship in Na1/2Bi1/2TiO3-based lead-free piezoceramics. (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 is an extensively studied system because of its interesting piezoelectric properties. Recently, a room temperature phase boundary was reported at x = 0.03 in this system Ma et al., Adv. Funct. Mater. 23, 5261 (2013)]. In the present work we have examined this subtle phase boundary using x-ray diffraction, neutron diffraction, dielectric measurements as a function of composition (x < 0.06), temperature, and electric field. Our results show that this boundary separates an R3c + Cc-like structural state for x < 0.03 from an R3c+ cubiclike structural state for 0.03 <= x <= 0.05 in the unpoled specimens. This phase boundary is characterized by an anomalous reduction in the depolarization temperature, and a suppression of the tetragonal distortion of the high temperature P4bm phase. Our results also provide the clue to understand the pathway leading to the cubiclike structure of the critical composition x = 0.06, known for its highest piezoelectric response.
Resumo:
The variation in the electrical resistivity of the chalcogenide glasses Ge15Te85-x has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.
Resumo:
There is great interest in lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O-3 (15/10BCTZ) because of its exceptionally large piezoelectric response Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009)]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature-and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P4mm)+ orthorhombic (Amm2) + rhombohedral (R3m). We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.