927 resultados para Laser diode (LD)
Resumo:
The channelled spectrum of an optical beam generated by a laser diode operated below threshold after traversing microscope glass plates is spectrally analysed using a grating and a CCD linear array. The experiment has the following goals: to display the resulting channelled spectrum, to familiarize students with an important topic in metrology and to illustrate some interesting topics from spectroscopy using a CCD array as a spectrometer.
Resumo:
We report a novel demodulation scheme for the detection of small Bragg wavelength shifts in a fiber Bragg grating strain sensor by exploiting the optical feedback reflected from the grating structure back into a 1310 nm laser diode integrating a photodiode. The dynamic strain generated by a mechanical vibrator is applied transversely to the fiber Bragg grating and the desired longitudinal strain values inferred from the detected sawtooth-like optical feedback signals. Preliminary results demonstrate the feasibility of this demodulation technique for strain measurement which could be further extended to fiber Bragg grating-based sensors for the detection of different measurands in general.
Resumo:
We report a novel demodulation scheme for the detection of small Bragg wavelength shifts in a fiber Bragg grating strain sensor by exploiting the optical feedback reflected from the grating structure back into a 1310 nm laser diode integrating a photodiode. The dynamic strain generated by a mechanical vibrator is applied transversely to the fiber Bragg grating and the desired longitudinal strain values inferred from the detected sawtooth-like optical feedback signals. Preliminary results demonstrate the feasibility of this demodulation technique for strain measurement which could be further extended to fiber Bragg grating-based sensors for the detection of different measurands in general.
Resumo:
The channelled spectrum of an optical beam generated by a laser diode operated below threshold after traversing microscope glass plates is spectrally analysed using a grating and a CCD linear array. The experiment has the following goals: to display the resulting channelled spectrum, to familiarize students with an important topic in metrology and to illustrate some interesting topics from spectroscopy using a CCD array as a spectrometer.
Resumo:
A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.
Resumo:
We report on an 880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on a semiconductor saturable absorber mirror (SESAM) for the first time. When the incident pump power was 16 W, 4.76 W average output power of continuous-wave mode-locked laser with an optical-to-optical conversion efficiency of 30% was achieved. The repetition rate of mode-locked pulse was 80 MHz with 25 ps pulse width. The maximum pulse energy and peak power were 60 nJ and 2.4 kW, respectively.
Resumo:
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilises direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially non-homogenous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.
Resumo:
We demonstrate a straightforward technique to measure the linewidth of a grating-stabilized diode laser system - known as an external cavity diode laser (ECDL) - by beating the output of two independent ECDLs in a Michelson interferometer, and then taking the Fourier transform of the beat signal. The measured linewidth is the sum of the linewidths of the two laser systems. Assuming that the two are equal, we find that the linewidth of each ECDL measured over a time period of 2. s is about 0.3 MHz. This narrow linewidth shows the advantage of using such systems for high-resolution spectroscopy and other experiments in atomic physics.
Resumo:
Effective diode-pumped cw tunable laser action of a new alloyed crystal Yb:Gd(2(1-)x) Y2xSiO5 (Yb:GYSO, x = 0.5) is demonstrated for the first time. The alloyed crystal retains excellent laser properties of Gd2SiO5 (GSO), as well as the favorable growth properties and the desirable physical of Y2SiO5 (YSO). With a 5-at.% Yb: GYSO sample, we achieved 2.44 W output power at 1081.5 nm and a slope efficiency of 57%. And its laser wavelength could be tuned from 1030nm to 1089 nm. (c) 2006 Optical Society of America.
Resumo:
This paper presents the design and characterization of a fiber Fabry-Perot interferometer (FFPI) acoustic wave detector with its Q point being stabilized actively. The relationship between the reflectivity of the F-P cavity facets and cavity length was theoretically analyzed, and high visibility of 100% was realized by optimized design of the F-P cavity. To prevent the drifting of the Q point, a new stabilization method by actively feedback controlling of the diode laser is proposed and demonstrated, indicating the method is simple and easy operating. Measurement shows that good tracing of Q point was effectively realized. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
报道了激光二极管(LD)抽运的Nd:YLF激光器,采用平凹腔结构,分别用两片Cr^4+:YAG可饱和吸收晶体,实现了被动调Q,输出激光波长为1053nm。采用厚度为0.5mm小信号透过率为90%的Cr^4+ YAG,在泵浦功率最大为17W时,输出脉冲宽度为60.6ns,平均功率为1.5W,重复频率为9.5kHz,单脉冲能量为157.9mJ;采用厚度为0.55mm小信号透过率为95%的Cr^4+ YAG,在泵浦功率最大为17W时,输出脉冲宽度为68.6ns,平均功率为1.35W,重复频率为14kHz,单脉冲