933 resultados para Langmuir layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The layer-by-layer technique was exploited to immobilize the enzyme uricase onto indium tin oxide substrates coated with a layer of Prussian Blue. Uricase layers were alternated with either poly(ethylene imine) or poly(diallyidimethylammoniumchloride), and the resulting films were used as amperometric biosensors for uric acid. Biosensors with optimum perfomance had a limit of detection of 0.15 mu A mu mol 1(-1) cm(-2) with a linear response between 0.1 and 0.6 mu M of uric acid, which is sufficient for use in clinical tests. Bioactivity was preserved for weeks, and there was negligible influence from interferents, as detection was carried out at 0.0 V vs saturated calomel electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodium phthalocyanine (RhPc) was synthesized and ultra thin Langmuir-Blodgett (LB) films of RhPc were successfully fabricated. The LB film characterization was carried out using both UV-vis absorption spectra and Raman scattering. The Raman spectroscopy was carried out using 633 and 780 nm laser lines. LB films were deposited onto Ag nanoparticles to achieve the surface-enhanced pre-resonance Raman scattering (pre-SERRS) and surface-enhanced Raman scattering (SERS) for both laser lines, respectively, which allowed the characterization of the RhPc ultra thin films. The morphology of the LB RhPc neat film is extracted from micro-Raman imaging. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(styrene-co-methyl methacrylate) (PS-PMMA) ionomers with several degrees of sulfonation were synthesized and characterized by infrared, UV-vis, and NMR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). Stable Langmuir films could be produced with PS-PMMA with 3 and 6 mol % of sulfonation, while PS-PMMA 8% exhibited material loss to the water subphase, probably due to its higher solubility. Surface pressure and surface potential isotherms with PS-PMMA 3% spread onto salt-containing subphases pointed to a film behavior characteristic of the polyelectrolyte effect, where charge repulsion governs the film properties. The Langmuir-Blodgett films of this ionomer were successfully transferred onto various substrates, as confirmed by UV-vis and FTIR spectroscopies. Using cycling voltammetry, we show that LB films from PS-PMMA 3% can be applied in selective sensing of dopamine, even in the presence of interferents such as ascorbic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. on the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan is alternated with sulfonated polystyrene (PSS) to build layer-by-layer (LBL) films that are used as sensing units in an electronic tongue. Using impedance spectroscopy as the principle method of detection, an array using chitosan/PSS LBL film and a bare gold electrode as the sensing units was capable of distinguishing the basic tastes - salty, sweet, bitter, and sour - to a concentration below the human threshold. The suitability of chitosan as a sensing material was confirmed by using this sensor to distinguish red wines according to their vintage, vineyard, and brands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A PPV derivative, poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene) (OC1OC18-PPV), has been synthesized via the Gilch route and used to fabricate Langmuir and Langmuir-Blodgett (LB) films. True monomolecular films were formed at the air/water interface, which were successfully transferred onto different types of substrate. Using UV-visible absorption, FTIR, fluorescence and Raman scattering spectroscopies we observed that the polymer molecules were randomly distributed in the LB film, with no detectable anisotropy. This is in contrast to the anisotropic LB films of a previously reported PPV derivative, poly(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV), which is surprising because the longer chain of OC1OC18-PPV investigated here was expected to lead to more ordered films. As a consequence of the lack of order, LB films of OC1OC18-PPV exhibit lower photoconductivity and require higher operating voltage in a polymer light-emitting diode (PLED) in comparison with LB films of OC1OC6-PPV. This result confirms the importance of molecular organization in the LB film to obtain efficient PLEDs. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The versatility of sensor arrays made from nanostructured Langmuir-Blodgett (LB) and layer-by-layer (LBL) films is demonstrated in two ways. First, different combinations of sensing units are employed to distinguish the basic tastes, viz. sweet, sour, bitter, and salty tastes, produced, respectively, by small concentrations (down to 0.01 g/mol) of sucrose, HCl, quinine, and NaCl solutions. The sensing units are comprised of LB and/or LBL films from semiconducting polymers, a ruthenium complex, and sulfonated lignin. Then, sensor arrays were used to identify wines from different sources, with the high distinguishing ability being demonstrated in principal component analysis (PCA) plots. Particularly important was the fact that the sensing ability does not depend on specific interactions between analytes and the film materials, but a judicious choice of materials is, nevertheless, required for the materials to respond differently to a given sample. It is also shown that the interaction with the analyte may affect the morphology of the nanostructured films, as indicated with scanning electron microscopy. For instance, in wine analysis these changes are not irreversible and the original film morphology is retrieved if the sensing unit is washed with copious amounts of water, thus allowing the sensor unit to be reused.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a poly(azo)urethane by fixing CO2 in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed clean method and the polymers obtained are named NIPUs (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per met unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the formation of Langmuir films of 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphine,hereafter named tetrapyridyl porphyrins with distinct central ions (2H(+), Zn(2+), Cu(2+), Ni(2+)). The films were characterized with surface pressure and surface potential isotherms and in situ UV-vis absorbance. The measurements indicated strong aggregation of porphyrin monomers at the air-water interface, with a red shift of the Soret band in comparison with the spectrum obtained from CHCl(3) solutions. The shift was larger for the non-substituted H(2)TPyP, and depended on the metal ion. Significantly, aggregation occurred right after spreading of the Langmuir film, with on further shifts in the UV-vis spectra upon compression of the film, or even after transferring them onto solid substrates in the form of Langmuir-Blodgett (LB) films. The buildup of LB films from H(2)TPyP and ZnTPyP was monitored with UV-vis spectroscopy, indicating an equal amount of material deposited in each deposition step. Using FTIR in the transmission and reflection modes, we inferred that the H(2)TPyP molecules exhibit no preferential orientation in the LB films, while for ZnTPyP there is preferential orientation, with the porphyrin molecules anchored to the substrate by the lateral pyridyl groups. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of molecular architectures has been a key factor for the use of Langmuir-Blodgett (LB) films in biosensors, especially because biomolecules can be immobilized with preserved activity. In this paper we investigated the incorporation of tyrosinase (Tyr) in mixed Langmuir films of arachidic acid (AA) and a lutetium bisphthalocyanine (LuPc2), which is confirmed by a large expansion in the surface pressure isotherm. These mixed films of AA-LuPc2 + Tyr could be transferred onto ITO and Pt electrodes as indicated by FTIR and electrochemical measurements, and there was no need for crosslinking of the enzyme molecules to preserve their activity. Significantly, the activity of the immobilised Tyr was considerably higher than in previous work in the literature, which allowed Tyr-containing LB films to be used as highly sensitive voltammetric sensors to detect pyrogallol. Linear responses have been found up to 400 mu M, with a detection limit of 4.87 x 10(-2) mu M (n = 4) and a sensitivity of 1.54 mu A mu M-1 cm(-2). In addition, the Hill coefficient (h = 1.27) indicates cooperation with LuPc2 that also acts as a catalyst. The enhanced performance of the LB-based biosensor resulted therefore from a preserved activity of Tyr combined with the catalytic activity of LuPc2, in a strategy that can be extended to other enzymes and analytes upon varying the LB film architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)