930 resultados para Land preparation method
Resumo:
In the present study, the land use over Kerala State and its spatial and temporal variations, spatio-temporal variations of water budget elements, climatic shifts, incidence of droughts and the influence of inter-annual fluctuations of rainfall on area. production and yield of selected crops, have been studied in detail. The thesis consists of seven chapters including the introduction. The first section of the Second Chapter deals with the importance of agrocliinatological studies in general and its application in agricultural land use in particular. It also gives an overview of the short term climatic fluctuations, water balance studies, crop weather relationships, land use patterns and various agricultural indices. This includes a detailed review of available literature in this field. The basic concepts. data used and the methodology adopted in the study forms, the second section of this Chapter. The Third Chapter gives the details of the physical features of the State such as the relief, geology, geomorphologysoils, drainage, and vegetation. The agroclimatology of the State is discussed in detail in Chapter Four. The first Section presents annual and seasonal variations of temperature and rainfall of the State along with a discussion on the water balance of the State. The secondSection of this Chapter deals with the influence of rainfall and water balance elements on various crops. The district-wise general land use pattern of theState and its spatio-temporal variations are discussed in Chapter Five. The first Section of Chapter Six gives an overview of the agricultural land use pattern of the State, cropping patterns, cropping intensity, crop combination and their spatio-temporal variations. The inter-annual variability of water balances of various stations of the State computed using the method of Thornthwaite (1948) and Thornthwaite & Mather (1955) is presented in the second Section of Chapter Six. This also includes a discussion of how the climatic shifts have occurred over the State and the influence of variations of climatic and water balance elements on the crops. The Seventh Chapter gives the summary of the work carried out and the results obtained from the study. Interpretations of the results, conclusions and suggestions made,based on the observations of the study are incorporated in this Chapter.
Resumo:
The work reported in this thesis is the preparation, and the structural, electrical and optical properties of reactively evaporated lead sulphide and tin telluride thin films. The three temperature method had been used for the preparation of these semiconductor thin films. In this preparation technique constituent elements are evaporated from separate sources with the substrate kept at a particular temperature. when one of the constituent element is a gas near room temperature, the method is often called reactive evaporation. It has been found for many materials that a stoichiometric interval exists with a limited range of flux and substrate temperature. Usually this technique is used for the preparation of thin films of high melting point compounds or of materials which decompose during evaporation. Tin telluride and lead sulphide are neither high melting point materials nor do they decompose on melting. But even than reactive evaporation offers the possibility of changing the ratios of the flux of the constituent elements within a wide range and studying its effect on the properties of the films
Resumo:
Use of short fibers as reinforcing fillers in rubber composites is on an increasing trend. They are popular due to the possibility of obtaining anisotropic properties, ease of processing and economy. In the preparation of these composites short fibers are incorporated on two roll mixing mills or in internal mixers. This is a high energy intensive time consuming process. This calls for developing less energy intensive and less time consuming processes for incorporation and distribution of short fibers in the rubber matrix. One method for this is to incorporate fibers in the latex stage. The present study is primarily to optimize the preparation of short fiber- natural rubber composite by latex stage compounding and to evaluate the resulting composites in terms of mechanical, dynamic mechanical and thermal properties. A synthetic fiber (Nylon) and a natural fiber (Coir) are used to evaluate the advantages of the processing through latex stage. To extract the full reinforcing potential of the coir fibers the macro fibers are converted to micro fibers through chemical and mechanical means. The thesis is presented in 7 chapters
Resumo:
The investigation of physical properties of matter has progressed so much during the last hundred years. Today physics is divided in to a large distinct group of special branches. These branches are distinguished by the particular area studied, method of investigation and so on. An independent and important branch that has developed is the physics ofthin films.Any object in solid or liquid form with one of its dimensions very much smaller than that of the other two may be called a thin film. It is having only one common property, namely, one of their dimensions is very small, though all their physical properties may be different. Thin layers of oil, floating on the surface of water, with their fascinating colours, have attracted men’s curiosity from time immemorial. The earliest application of thin films was the protective coatings in the form of paints. A thin layer of tin has been used from ancient times to protect copper utensils from corrosion. Indium thin films are used in certain applications on account of their good lubricating property. Relay contacts are coated with thin films of rare earth metals in order to prevent burning due to arcing. Hard coatings are also available using diamond like carbon (i-carbon). The basic properties of thin films are of considerable interest because of their potential applications in various fields of science and technology
Resumo:
Optimum conditions for the preparation of tape recording quality Y-Fe20 s by the thermal decomposition of ferrous oxalate dihydrate have been established. Formation of the intermediate F%O~ which is most important in forming Y-FezO 3 takes place only in the presence of water vapour. Various stages of decomposition have been characterised by DTA, TG, DTG, and x-ray powder diffraction. The method for the preparation of acicular "Y-Fe208 that matches very well with the commercial tape recording material has been developed
Resumo:
Mixed ferrites belonging to the type Mn0.9Zn0.1Fe2O4 have been prepared by the double sintering method and by the chemical co-precipitation for comparing their magnetic properties. Sintered and precipitated ferrites exhibit different characteristics, especially in their magnetic properties like magnetization (Ms), coercive field (Hc) and Curie temperature (Tc). The sintered particles were size reduced in order to compare with the nanosized co-precipitated particles. The effect of grinding has also been studied. Particles have been collected at regular intervals of grinding and their properties have been studied. The increase in the coercive field has been recorded by a hysteresis curve tracer confirming size reduction. X-ray diffraction studies confirmed the structure and consequent size reduction
Resumo:
Sensitisation of natural rubber latex by addition of a small quantity of an anionic surfactant prior to the addition of a coacervant results in quick coagulation. The natural rubber prepared by the novel coagulation method shows improved raw rubber characteristics, better cure characteristics in gum and carbon black filled compounds and improved mechanical properties as compared to the conventionally coagulated natural rubber. Compounds based on dried masterbatches prepared by the incorporation of fluffy carbon black in different forms of soap sensitised natural rubber latices such as fresh latex, preserved field latex, centrifuged latex and a blend of preserved field latex and skim latex show improved cure characteristics and vucanizate properties as compared to an equivalent conventional dry rubber-fluffy carbon black based compound. The latex masterbatch based vulcanizates show higher level of crosslinking and better dispersion of filler. Vulcanizates based on fresh natural rubber latex- dual filler masterbatches containing a blend of carbon black and silica prepared by the modified coagulation process shows very good mechanical and dynamic properties that could be correlated to a low rolling resistance. The carbon black/silica/nanoclay tri-filler - fresh natural rubber latex masterbatch based vulcanizates show improved mechanical properties as the proportion of nanoclay increased up to 5 phr. The fresh natural rubber latex based carbon black-silica masterbatch/ polybutadiene blend vulcanizates show superior mechanical and dynamic properties as compared to the equivalent compound vulcanizates prepared from the dry natural rubber-filler (conventional dry mix)/polybutadiene blends
Resumo:
Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.
Resumo:
Nanophotonics can be regarded as a fusion of nanotechnology and photonics and it is an emerging field providing researchers opportunities in fundamental science and new technologies. In recent times many new methodsand techniques have been developed to prepare materials at nanoscale dimensions. Most of these materials exhibit unique and interesting optical properties and behavior. Many of these have been found to be very useful to develop new devices and systems such as tracers in biological systems, optical limiters, light emitters and energy harvesters. This thesis presents a summary of the work done by the author in the field by choosing a few semiconductor systems to prepare nanomaterials and nanocomposites. Results of the study of linear and nonlinear optical properties of materials thus synthesized are also presented in the various chapters of this thesis. CdS is the material chosen here and the methods and the studies of the detailed investigation are presented in this thesis related to the optical properties of CdS nanoparticles and its composites. Preparation and characterization methods and experimental techniques adopted for the investigations were illustrated in chapter 2 of this thesis. Chapter 3 discusses the preparation of CdS, TiO2 and Au nanoparticles. We observed that the fluorescence behaviour of the CdS nanoparticles, prepared by precipitation technique, depends on excitation wavelength. It was found that the peak emission wavelength can be shifted by as much as 147nm by varyingthe excitation wavelengths and the reason for this phenomenon is the selective excitation of the surface states in the nanoparticles. This provided certain amount of tunability for the emission which results from surface states.TiO2 nanoparticle colloids were prepared by hydrothermal method. The optical absorption study showed a blue shift of absorption edge, indicating quantum confinement effect. The large spectral range investigated allows observing simultaneously direct and indirect band gap optical recombination. The emission studies carried out show four peaks, which are found to be generated from excitonic as well as surface state transitions. It was found that the emission wavelengths of these colloidal nanoparticles and annealed nanoparticles showed two category of surface state emission in addition to the excitonic emission. Au nanoparticles prepared by Turkevich method showed nanoparticles of size below 5nm using plasmonic absorption calculation. It was also found that there was almost no variation in size as the concentration of precursor was changed from 0.2mM to 0.4mM.We have observed SHG from CdS nanostructured thin film prepared onglass substrate by chemical bath deposition technique. The results point out that studied sample has in-plane isotropy. The relative values of tensor components of the second-order susceptibility were determined to be 1, zzz 0.14, xxz and 0.07. zxx These values suggest that the nanocrystals are oriented along the normal direction. However, the origin of such orientation remains unknown at present. Thus CdS is a promising nonlinear optical material for photonic applications, particularly for integrated photonic devices. CdS Au nanocomposite particles were prepared by mixing CdS nanoparticles with Au colloidal nanoparticles. Optical absorption study of these nanoparticles in PVA solution suggests that absorption tail was red shifted compared to CdS nanoparticles. TEM and EDS analysis suggested that the amount of Au nanoparticles present on CdS nanoparticles is very small. Fluorescence emission is unaffected indicating the presence of low level of Au nanoparticles. CdS:Au PVA and CdS PVA nanocomposite films were fabricated and optically characterized. The results showed a red-shift for CdS:Au PVA film for absorption tail compared to CdS PVA film. Nonlinear optical analysis showed a huge nonlinear optical absorption for CdS:Au PVA nanocomposite and CdS:PVA films. Also an enhancement in nonlinear optical absorption is found for CdS:Au PVA thin film compared to the CdS PVA thin film. This enhancement is due to the combined effect of plasmonic as well as excitonic contribution at high input intensity. Samples of CdS doped with TiO2 were also prepared and the linear optical absorption spectra of these nanocompositeparticles clearly indicated the influence of TiO2 nanoparticles. TEM and EDS studies have confirmed the presence of TiO2 on CdS nanoparticles. Fluorescence studies showed that there is an increase in emission peak around 532nm for CdS nanoparticles. Nonlinear optical analysis of CdS:TiO2 PVA nanocomposite films indicated a large nonlinear optical absorption compared to that of CdS:PVA nanocomposite film. The values of nonlinear optical absorption suggests that these nanocomposite particles can be employed for optical limiting applications. CdSe-CdS and CdSe-ZnS core-shell QDs with varying shell size were characterized using UV–VIS spectroscopy. Optical absorption and TEM analysis of these QDs suggested a particle size around 5 nm. It is clearly shown that the surface coating influences the optical properties of QDs in terms of their size. Fluorescence studies reveal the presence of trap states in CdSe-CdS and CdSe- ZnS QDs. Trap states showed an increase as a shell for CdS is introduced and increasing the shell size of CdS beyond a certain value leads to a decrease in the trap state emission. There is no sizeable nonlinear optical absorption observed. In the case of CdSe- ZnS QDs, the trap state emission gets enhanced with the increase in ZnS shell thickness. The enhancement of emission from trap states transition due to the increase in thickness of ZnS shell gives a clear indication of distortion occurring in the spherical symmetry of CdSe quantum dots. Consequently the nonlinear optical absorption of CdSe-ZnS QDs gets increased and the optical limiting threshold is decreased as the shell thickness is increased in respect of CdSe QDs. In comparison with CdSe-CdS QDs, CdSe-ZnS QDs possess much better optical properties and thereby CdSe-ZnS is a strong candidate for nonlinear as well as linear optical applications.
Resumo:
Diese Arbeit beschäftigt sich mit der Herstellung und Anwendungen von periodischen Goldnanopartikel-Arrays (PPAs), die mit Hilfe von Nanosphären-Lithografie hergestellt wurden. In Abhängigkeit der verwendeten Nanosphären-Größe wurden dabei entweder kleine dreieckige Nanopartikel (NP) (bei Verwendung von Nanosphären mit einem Durchmesser von 330 nm) oder große dreieckige NPD sowie leicht gestreckte NP (bei Verwendung von Nanosphären mit einem Durchmesser von 1390 nm) hergestellt. Die Charakterisierung der PPAs erfolgte mit Hilfe von Rasterkraftmikroskopie, Rasterelektronenmikroskopie und optischer Spektroskopie. Die kleinen NP besitzen ein Achsverhältnis (AV) von 2,47 (Kantenlänge des NPs: (74+/-6) nm, Höhe: (30+/-4) nm. Die großen dreieckigen NP haben ein AV von 3 (Kantenlänge des NPs:(465+/-27) nm, Höhe: (1530+/-10) nm) und die leicht gestreckten NP (die aufgrund der Ausbildung von Doppelschichten ebenfalls auf der gleichen Probe erzeugt wurden) haben eine Länge von (364+/-16)nm, eine Breite von (150+/-20) nm und eine Höhe von (150+/-10)nm. Die optischen Eigenschaften dieser NP werden durch lokalisierte Oberflächenplasmon-Polariton Resonanzen (LPPRs) dominiert, d.h. von einem eingestrahlten elektromagnetischen Feld angeregte kollektive Schwingungen der Leitungsbandelektronen. In dieser Arbeit wurden drei signifikante Herausforderungen für Plasmonik-Anwendungen bearbeitet, welche die einzigartigen optischen Eigenschaften dieser NP ausnutzen. Erstens wurden Ergebnisse der selektiven und präzisen Größenmanipulation und damit einer Kontrolle der interpartikulären Abstände von den dreieckigen Goldnanopartikel mit Hilfe von ns-gepulstem Laserlicht präsentiert. Die verwendete Methode basiert hierbei auf der Größen- und Formabhängigkeit der LPPRs der NP. Zweitens wurde die sensorischen Fähigkeiten von Gold-NP ausgenutzt, um die Bildung von molekularen Drähten auf den PPAs durch schrittweise Zugabe von unterschiedlichen molekularen Spezies zu untersuchen. Hierbei wurde die Verschiebung der LSPPR in den optischen Spektren dazu ausgenutzt, die Bildung der Nanodrähte zu überwachen. Drittens wurden Experimente vorgestellt, die sich die lokale Feldverstärkung von NP zu nutze machen, um eine hochgeordnete Nanostrukturierung von Oberflächen mittels fs-gepulstem Laserlicht zu bewerkstelligen. Dabei zeigt sich, dass neben der verwendeten Fluenz die Polarisationsrichtung des eingestrahlten Laserlichts in Bezug zu der NP-Orientierung sowie die Größe der NP äußerst wichtige Parameter für die Nanostrukturierung darstellen. So konnten z.B. Nanolöcher erzeugt werden, die bei höheren Fluenzen zu Nanogräben und Nanokanälen zusammen wuchsen. Zusammengefasst lässt sich sagen, dass die in dieser Arbeit gewonnen Ergebnisse von enormer Wichtigkeit für weitere Anwendungen sind.
Resumo:
Land use has become a force of global importance, considering that 34% of the Earth’s ice-free surface was covered by croplands or pastures in 2000. The expected increase in global human population together with eminent climate change and associated search for energy sources other than fossil fuels can, through land-use and land-cover changes (LUCC), increase the pressure on nature’s resources, further degrade ecosystem services, and disrupt other planetary systems of key importance to humanity. This thesis presents four modeling studies on the interplay between LUCC, increased production of biofuels and climate change in four selected world regions. In the first study case two new crop types (sugarcane and jatropha) are parameterized in the LPJ for managed Lands dynamic global vegetation model for calculation of their potential productivity. Country-wide spatial variation in the yields of sugarcane and jatropha incurs into substantially different land requirements to meet the biofuel production targets for 2015 in Brazil and India, depending on the location of plantations. Particularly the average land requirements for jatropha in India are considerably higher than previously estimated. These findings indicate that crop zoning is important to avoid excessive LUCC. In the second study case the LandSHIFT model of land-use and land-cover changes is combined with life cycle assessments to investigate the occurrence and extent of biofuel-driven indirect land-use changes (ILUC) in Brazil by 2020. The results show that Brazilian biofuels can indeed cause considerable ILUC, especially by pushing the rangeland frontier into the Amazonian forests. The carbon debt caused by such ILUC would result in no carbon savings (from using plant-based ethanol and biodiesel instead of fossil fuels) before 44 years for sugarcane ethanol and 246 years for soybean biodiesel. The intensification of livestock grazing could avoid such ILUC. We argue that such an intensification of livestock should be supported by the Brazilian biofuel sector, based on the sector’s own interest in minimizing carbon emissions. In the third study there is the development of a new method for crop allocation in LandSHIFT, as influenced by the occurrence and capacity of specific infrastructure units. The method is exemplarily applied in a first assessment of the potential availability of land for biogas production in Germany. The results indicate that Germany has enough land to fulfill virtually all (90 to 98%) its current biogas plant capacity with only cultivated feedstocks. Biogas plants located in South and Southwestern (North and Northeastern) Germany might face more (less) difficulties to fulfill their capacities with cultivated feedstocks, considering that feedstock transport distance to plants is a crucial issue for biogas production. In the fourth study an adapted version of LandSHIFT is used to assess the impacts of contrasting scenarios of climate change and conservation targets on land use in the Brazilian Amazon. Model results show that severe climate change in some regions by 2050 can shift the deforestation frontier to areas that would experience low levels of human intervention under mild climate change (such as the western Amazon forests or parts of the Cerrado savannas). Halting deforestation of the Amazon and of the Brazilian Cerrado would require either a reduction in the production of meat or an intensification of livestock grazing in the region. Such findings point out the need for an integrated/multicisciplinary plan for adaptation to climate change in the Amazon. The overall conclusions of this thesis are that (i) biofuels must be analyzed and planned carefully in order to effectively reduce carbon emissions; (ii) climate change can have considerable impacts on the location and extent of LUCC; and (iii) intensification of grazing livestock represents a promising venue for minimizing the impacts of future land-use and land-cover changes in Brazil.
Resumo:
Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.
Resumo:
The common GIS-based approach to regional analyses of soil organic carbon (SOC) stocks and changes is to define geographic layers for which unique sets of driving variables are derived, which include land use, climate, and soils. These GIS layers, with their associated attribute data, can then be fed into a range of empirical and dynamic models. Common methodologies for collating and formatting regional data sets on land use, climate, and soils were adopted for the project Assessment of Soil Organic Carbon Stocks and Changes at National Scale (GEFSOC). This permitted the development of a uniform protocol for handling the various input for the dynamic GEFSOC Modelling System. Consistent soil data sets for Amazon-Brazil, the Indo-Gangetic Plains (IGP) of India, Jordan and Kenya, the case study areas considered in the GEFSOC project, were prepared using methodologies developed for the World Soils and Terrain Database (SOTER). The approach involved three main stages: (1) compiling new soil geographic and attribute data in SOTER format; (2) using expert estimates and common sense to fill selected gaps in the measured or primary data; (3) using a scheme of taxonomy-based pedotransfer rules and expert-rules to derive soil parameter estimates for similar soil units with missing soil analytical data. The most appropriate approach varied from country to country, depending largely on the overall accessibility and quality of the primary soil data available in the case study areas. The secondary SOTER data sets discussed here are appropriate for a wide range of environmental applications at national scale. These include agro-ecological zoning, land evaluation, modelling of soil C stocks and changes, and studies of soil vulnerability to pollution. Estimates of national-scale stocks of SOC, calculated using SOTER methods, are presented as a first example of database application. Independent estimates of SOC stocks are needed to evaluate the outcome of the GEFSOC Modelling System for current conditions of land use and climate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Stable isotopic characterization of chlorine in chlorinated aliphatic pollution is potentially very valuable for risk assessment and monitoring remediation or natural attenuation. The approach has been underused because of the complexity of analysis and the time it takes. We have developed a new method that eliminates sample preparation. Gas chromatography produces individually eluted sample peaks for analysis. The He carrier gas is mixed with Ar and introduced directly into the torch of a multicollector ICPMS. The MC-ICPMS is run at a high mass resolution of >= 10 000 to eliminate interference of mass 37 ArH with Cl. The standardization approach is similar to that for continuous flow stable isotope analysis in which sample and reference materials are measured successively. We have measured PCE relative to a laboratory TCE standard mixed with the sample. Solvent samples of 200 nmol to 1.3 mu mol ( 24- 165 mu g of Cl) were measured. The PCE gave the same value relative to the TCE as measured by the conventional method with a precision of 0.12% ( 2 x standard error) but poorer precision for the smaller samples.
Resumo:
A perennial issue for land use policy is the evaluation of landscape biodiversity and the associated cost effectiveness of any biodiversity conservation policy actions. Based on the CUA methodology as applied to species conservation, this paper develops a methodology for evaluating the impact on habitats of alternative landscape management scenarios. The method incorporates three dimensions of habitats, quantity change, quality change and relative scarcity, and is illustrated in relation to the alternative landscape management scenarios for the Scottish Highlands (Cairngorms) study area of the BioScene project. The results demonstrate the value of the method for evaluating biodiversity conservation policies through their impact on habitats.