948 resultados para Laboratories parameters
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is proposed in this paper. The intrinsic response is extracted from the measured transmission coefficients of laser diode, and the parasitics of packaging net-work laser chip are determined from the measured reflection coefficient of laser diode simultaneously. It is shown that the theories agree well with the experimental results.
Resumo:
We describe a new method for extracting the intrinsic response of a laser diode from S-parameters measured using a calibrated vector network analyzer. The experimental results obtained using the new method are compared with those obtained using the optical modulation method and the frequency response subtraction method. Good agreement has been obtained, confirming the new method validity and accuracy. The new method has the advantages of obtaining the intrinsic characteristics of a laser diode with conventional measurements using a network analyzer.
Resumo:
High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.
Resumo:
We present a novel method for determining semiconductor parameters such as diffusion length L, lifetime tau and surface recombination velocity S of minority carriers by employing scanning electron microscopy (SEM). This new method is applicable to both electron beam induced current (EBIC and surface electron beam induced voltage (SEBIV) modes in SEM. The quantitative descriptions for EBIC and SEBIV signals are derived. The parameters L, S and tau can be directly extracted from the expressions for EBIC or SEBIV signals and their relaxation characteristics in experiment. As an example, the values of L, S and tau for n-p junction and p-Si crystal are determined by using the novel method in EBIC or SEBIV mode. The carrier diffusion length of a p-Si crystal is determined to be 8.74 mum in SEBIV mode. It is very close to the normal diffusion length of 7.41 mum of this sample. The novel method is proved to be very helpful for the quantitative characterization of semiconductor materials and devices. Especially, the SEBIV mode in SEM shows great potential for investigating semiconductor structures nondestructively.
Resumo:
Photoluminescence properties of SiGe/Si single wells with fluctuating structural parameters are studied. Four SiGe/Si single wells have been grown on Si(001) at 750 degrees C by disilane and solid Ge molecular beam epitaxy with varied disilane cracking-temperatures. Intense NP and TO-phonon replicas are detected up to 70 K in the photoluminescence spectra and the activation energy of the thermal quenching of the photoluminescence is 28 +/- 4 meV. The high growth temperature and purposeful introduction of fluctuation of structural parameters may be responsible for the improvement of the thermal quenching property.
Resumo:
The growth rate of GaN buffer layers on sapphire grown by metalorganic vapor-phase epitaxy (MOVPE) in an atmospheric pressure, two-channel reactor was studied. The growth rate, as measured using laser reflectance, was found to be dependent on growth temperature, molar flow rate of the sources tin this case, trimethylgallium and ammonia) and the input configuration of sources into the reactor. A model of the GaN buffer layer growth process by MOVPE is proposed to interpret the experimental evidence. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is introduced in this paper. The intrinsic small-signal response can be directly extracted from the measured transmission coefficients of laser diode by the method. However the chip temperature may change with the injection bias current due to thermal effects, which causes inaccurate intrinsic response by our method. Therefore, how to determine the chip temperature and keep the laser chip adiabatic is very critical when extracting the intrinsic response. To tackle these problems, the dependence of the lasing wavelength of the laser diode on the chip temperature is investigated, and an applicable measurement setup which keeps the chip temperature stable is presented. The scattering parameters of laser diode are measured on diabatic and adiabatic conditions, and the extracted intrinsic responses for both conditions are compared. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis indicates that inclusion of thermal effects is necessary to acquire accurate intrinsic response.
Resumo:
Tunable biaxial stresses, both tensile and compressive, are applied to a single layer graphene by utilizing piezoelectric actuators. The Gruneisen parameters for the phonons responsible for the D, G, 2D and 2D' peaks are studied. The results show that the D peak is composed of two peaks, unambiguously revealing that the 2D peak frequency (omega(2D)) is not exactly twice that of the D peak (omega(D)). This finding is confirmed by varying the biaxial strain of the graphene, from which we observe that the shift of omega(2D)/2 and omega(D) are different. The employed technique allows a detailed study of the interplay between the graphene geometrical structures and its electronic properties.
Resumo:
We study the effects of pulse heating parameters on the micro bubble behavior of a platinum microheater (100 mu m x 20 mu m) immersed in a methanol pool. The experiment covers the heat fluxes of 10-37 MW/m(2) and pulse frequencies of 25-500 Hz. The boiling incipience is initiated at the superheat limit of methanol, corresponding to the homogeneous nucleation. Three types of micro boiling patterns are identified. The first type is named as the bubble explosion and regrowth, consisting of a violent explosive boiling and shrinking, followed by a slower bubble regrowth and subsequent shrinking, occurring at lower heat fluxes. The second type, named as the bubble breakup and attraction, consists of the violent explosive boiling, bubble breakup and emission, bubble attraction and coalescence process, occurring at higher heat fluxes than those of the first type. The third type, named as the bubble size oscillation and large bubble formation, involves the initial explosive boiling, followed by a short periodic bubble growth and shrinking. Then the bubble continues to increase its size, until a constant bubble size is reached which is larger than the microheater length.
On the effective inversion by imposing a priori information for retrieval of land surface parameters
Resumo:
A model for analyzing the correlation between lattice parameters and point defects in semiconductors has been established. The results of this model for analyzing the substitutes in semiconductors are in accordance with those from Vegard's law and experiments. Based on this model, the lattice strains caused by the antisites, the tetrahedral and octahedral single interstitials, and the interstitial couples are analyzed. The superdilation in lattice parameters of GaAs grown at low temperatures by molecular-beam epitaxy can be interpreted by this model, which is in accordance with the experimental results. This model provides a way of analyzing the stoichiometry in bulk and epitaxial compound semiconductors nondestructively.