951 resultados para Kuhn-Tucker type necessary optimality conditions
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
Aims: To understand effects of tissue type, growth stage and soil fertilisers on bacterial endophyte communities of winter wheat (Triticum aestivum cv. Hereward). Methods: Endophytes were isolated from wheat grown under six fertiliser conditions in the long term Broadbalk Experiment at Rothamsted Research, UK. Samples were taken in May and July from root and leaf tissues. Results: Root and leaf communities differed in abundance and composition of endophytes. Endophytes were most abundant in roots and the Proteobacteria were most prevalent. In contrast, Firmicutes and Actinobacteria, the Gram positive phyla, were most prevalent in the leaves. Both fertiliser treatment and sample time influenced abundance and relative proportions of each phylum and genus in the endosphere. A higher density of endophytes was found in the Nil input treatment plants. Conclusions: Robust isolation techniques and stringent controls are critical for accurate recovery of endophytes. The plant tissue type, plant growth stage, and soil fertiliser treatment all contribute to the composition of the endophytic bacterial community in wheat. These results should help facilitate targeted development of endophytes for beneficial applications in agriculture.
Resumo:
Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.
Resumo:
The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.
Resumo:
A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.
Resumo:
Terrain following coordinates are widely used in operational models but the cut cell method has been proposed as an alternative that can more accurately represent atmospheric dynamics over steep orography. Because the type of grid is usually chosen during model implementation, it becomes necessary to use different models to compare the accuracy of different grids. In contrast, here a C-grid finite volume model enables a like-for-like comparison of terrain following and cut cell grids. A series of standard two-dimensional tests using idealised terrain are performed: tracer advection in a prescribed horizontal velocity field, a test starting from resting initial conditions, and orographically induced gravity waves described by nonhydrostatic dynamics. In addition, three new tests are formulated: a more challenging resting atmosphere case, and two new advection tests having a velocity field that is everywhere tangential to the terrain following coordinate surfaces. These new tests present a challenge on cut cell grids. The results of the advection tests demonstrate that accuracy depends primarily upon alignment of the flow with the grid rather than grid orthogonality. A resting atmosphere is well-maintained on all grids. In the gravity waves test, results on all grids are in good agreement with existing results from the literature, although terrain following velocity fields lead to errors on cut cell grids. Due to semi-implicit timestepping and an upwind-biased, explicit advection scheme, there are no timestep restrictions associated with small cut cells. We do not find the significant advantages of cut cells or smoothed coordinates that other authors find.
Resumo:
Hypertension can result from neuronal network imbalance in areas of central nervous system that control blood pressure, such as the nucleus tractus solitarius (NTS). There are several neurotransmitters and neuromodulatory substances within the NTS, such as adenosine, which acts on purinoreceptors A(2a) (A(2a)R). The A(2a)R modulates neurotransmission in the NTS where its activation may induce decrease in blood pressure by different mechanisms. Nicotine is a molecule that crosses the hematoencephalic barrier and acts in several areas of central nervous system including the NTS, where it may interact with some neurotransmitter systems and contributes to the development of hypertension in subjects with genetic predisposition to this disease. In this study we first determined A(2a)R binding, protein, and mRNA expression in dorsomedial medulla oblongata of neonate normotensive (WKY) and spontaneously hypertensive rats (SHR). Subsequently, we analyzed the modulatory effects of nicotine on A(2a)R in cell culture in order to evaluate its possible involvement in the development of hypertension. Data showed a decreased A(2a)R binding and increased protein and mRNA expression in tissue sample and culture of dorsal brainstem from SHR compared with those from WKY rats at basal conditions. Moreover, nicotine modulated A(2a)R binding, protein, and mRNA expression in cells from both strains. Interestingly, nicotine decreased A(2a)R binding and increased protein levels, as well as, induced a differential modulation in A(2a)R mRNA expression. Results give us a clue about the mechanisms involved in the modulatory effects of nicotine on A(2a)R as well as hypothesize its possible contribution to the development of hypertension. In conclusion, we demonstrated that A(2a)R of SHR cells which differ from WKY and nicotine differentially modulates A(2a)R in dorsal brainstem cells of SHR and WKY.
Resumo:
The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 mu m thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop.
Resumo:
The dengue virus NS1 protein has been shown to be a protective antigen under different experimental conditions but the recombinant protein produced in bacterial expression systems is usually not soluble and loses structural and immunological features of the native viral protein In the present study, experimental conditions leading to purification and refolding of the recombinant dengue virus type 2 (DENV-2) NS1 protein expressed in Escherichia coil are described The refolded recombinant protein was recovered as heat-stable soluble dimers with preserved structural features, as demonstrated by spectroscopic methods In addition, antibodies against epitopes of the NS1 protein expressed in eukaryotic cells recognized the refolded protein expressed in E coli but not the denatured form or the same protein submitted to a different refolding condition Collectively, the results demonstrate that the recombinant NS1 protein preserved important conformation and antigenic determinants of the native virus protein and represents a valuable reagent either for the development of vaccines or for diagnostic methods. (C) 2010 Elsevier B V All rights reserved
Resumo:
The 590-580 Ma Itu Granite Province (IGP) is a roughly linear belt of post-orogenic granite plutons similar to 60 km wide extending for some 350 km along the southern edge of the Apia-Guaxupe Terrane in southeastern Brazil. Typical components are subalkaline A-type granites (some with rapakivi texture) that crystallized at varied, but mostly strongly oxidizing conditions, and contrast with a coeval association of also oxidized high-K calc-alkaline granites in terms of major (e. g., lower Ca/Fe) and trace elements (higher Nb, Y, Zr). Mantle-derived magmas (such as those forming the LILE-rich Piracaia Monzodiorite, with epsilon(Nd(t)) = -7 to -10, (87)Sr/(86)Sr((t)) = 0.7045-0.7055) are inferred to derive from enriched subcontinental lithosphere modified during previous subduction, and may have played a role in the generation of the A-type granites, adding melts or fluids or both to the lower crust from which the latter were generated. The IGP is interpreted as a reflection of crust uplift and increased heat flux during ascent of hot, less dense asthenosphere after continental collision, probably reflecting breakoff of an oceanic slab coeval to the right-lateral accretion of a terrane related to the Mantiqueira Orogenic System.
Resumo:
We study irreducible morphisms of complexes. In particular, we show that the irreducible morphisms having one (finite) irreducible submorphism fall into three canonical forms and we give necessary and sufficient conditions for a given morphism of that type to be irreducible. Our characterization of the above mentioned type of irreducible morphisms of complexes characterizes also some class of irreducible morphisms of the derived category D(-)(A) for A a finite dimensional k-algebra, where k is a field. (C) 2009 Published by Elsevier Inc.
Resumo:
Let A be a finitely generated abelian group. We describe the automorphism group Aut(A) using the rank of A and its torsion part p-part A(p). For a finite abelian p-group A of type (k(1),..., k(n)), simple necessary and sufficient conditions for an n x n-matrix over integers to be associated with an automorphism of A are presented. Then, the automorphism group Aut(A) for a finite p-group A of type (k(1), k(2)) is analyzed. (C) 2008 Mathematical Institute Slovak Academy of Sciences.
Resumo:
We first introduce the notion of (p, q, r)-complemented subspaces in Banach spaces, where p, q, r is an element of N. Then, given a couple of triples {(p, q, r), (s, t, u)} in N and putting Lambda = (q + r - p)(t + u - s) - ru, we prove partially the following conjecture: For every pair of Banach spaces X and Y such that X is (p, q, r)-complemented in Y and Y is (s, t, u)-complemented in X, we have that X is isomorphic Y if and only if one of the following conditions holds: (a) Lambda not equal 0, Lambda divides p - q and s - t, p = 1 or q = 1 or s = 1 or t = 1. (b) p = q = s = t = 1 and gcd(r, u) = 1. The case {(2, 1, 1), (2, 1,1)} is the well-known Pelczynski`s decomposition method. Our result leads naturally to some generalizations of the Schroeder-B em stein problem for Banach spaces solved by W.T. Gowers in 1996. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2`-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 mu M ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Resumo:
The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3`-> 5`)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv Citri (PilZ(XAC1133), this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZ(XAC1133) shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which NZ proteins regulate specific processes is not clear. In this study, we show that PilZ(XAC1133) binds to PilB, an ATPase required for TV polymerization, and to the EAL domain of FiMX(XAC2398), which regulates TV biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXX(AC2398) in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZ(XAC1133). Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZ(XAC1133) interactions with FimX(XAC2398) and PilB(XAC3239) are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of ""degenerate"" GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery. (C) 2009 Elsevier Ltd. All rights reserved.