651 resultados para Kayamkulam Lagoon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major shipboard findings during Leg 23 drilling in the Red Sea was the presence of late Miocene evaporites at Sites 225, 227, and 228. The top of the evaporite sequence correlates with a strong reflector (Reflector S) which has been mapped over much of the Red Sea (Ross et al., 1969, Phillips and Ross, 1970). This indicates that the Red Sea appears to be extent. Miocene sediments, including evaporites, are known from a few outcrops along the coastal plains of the Gulf of Suez to lat 14°N (Sadek, 1959, cited in Friedman, 1972; Heybroek, 1965; Friedman, 1972). Along the length of the Red Sea, the presence of Miocene salt is indicated by seismic reflection studies (Lowell and Genik, 1972) and confirmed by drilling. The recently published data from deep exploratory wells (Ahmed, 1972) demonstrate the great thickness of elastics and evaporites which were deposited in the Red Sea depression during Miocene time. The Red Sea evaporites are of the same age as the evaporites found by deep sea drilling (DSDP Leg 13) in the Mediterranean Sea. Therefore, Reflector S in the Red Sea is comparable to Reflector M in the Mediterranean. It is assumed that during Miocene time a connection between these two basins was established (Coleman, this volume) resulting in a similar origin for the evaporites deposited in the Red Sea and in the Mediterranean Sea. The origin of the Mediterranean evaporites has been discussed in great detail (Hsü et al., 1973; Nesteroff, 1973; Friedman, 1973). The formation of evaporites may be interpreted by three different hypotheses. 1) Evaporation of a shallow restricted shelf sea or lagoon which receives inflows from the open ocean. 2) Evaporation of a deep-water basin which is separated from the open ocean by a shallow sill (Schmalz, 1969). 3) Evaporation of playas or salt lakes which are situated in desiccated deep basins isolated from the open ocean (Hsü et al., 1973). The purpose of this study is to show whether one of these models might apply to the formation and deposition of the Red Sea evaporites. Therefore, a detailed petrographic and geochemical investigation was carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope analyses have been carried out on calcareous skeletons of important recent groups of organisms. Annual temperature ranges and distinct developmental stages can be reconstructed from single shells with the aid of the micro-sampling technique made possible by modern mass-spectrometers. This is in contrast to the results of earlier studies which used bulk sampIes. The skeletons analysed are from Bermuda, the Philippines, the Persian Gulf and the continental margin off Peru. In these environments, seasonal salinity ranges and thus annual variations in the isotopic composition of the water are small. In addition, environmental parameters are weIl documented in these areas. The recognition of seasonal isotopic variations is dependant on the type of calcification. Shells built up by carbonate deposition at the margin, such as molluscs, are suitable for isotopic studies. Analysis is more difficult where chambers are added at the margin of the shell but where older chambers are simultaneously covered by a thin veneer of carbonate e. g. in rotaliid foraminifera. Organisms such as calcareous algae or echinoderms that thicken existing calcareous parts as weIl as growing in length and breadth are the most difficult to analyse. All organisms analysed show temperature related oxygen-isotope fractionation. The most recent groups fractionate oxygen isotopes in accordance with established d18O temperature relationships (Tab. 18, Fig. 42). These groups are deep-sea foraminifera, planktonic foraminifera, serpulids, brachiopods, bryozoa, almost all molluscs, sea urchins, and fish (otoliths). A second group of organisms including the calcareous algae Padina, Acetabularia, and Penicillus, as weIl as barnacles, cause enrichment of the heavy isotope 18O. Finally, the calcareous algae Amphiroa, Cymopolia and Halimeda, the larger foraminifera, corals, starfish, and holothurians cause enrichment of the lighter isotope 16O. Organisms causing non-equilibrium fractionation also record seasonal temperature variations within their skeletons which are reflected in stable-oxygen-isotope patterns. With the exception of the green algae Halimeda and Penicillus, all organisms analysed show lower d13C values than calculated equilibrium values (Tab. 18, Fig. 42). Especially enriched with the lighter isotope 12C are animals such as hermatypic corals and larger foraminifera which exist in symbiosis with other organisms, but also ahermatypic corals, starfish, and holothurians. With increasing age of the organisms, seven different d13C trends were observed within the skeletons. 1) No d13C variations are observed in deep-sea foraminifera presumably due to relatively stable environmental conditions. 2) Lower d13C values occur in miliolid larger foraminifera and are possibly related to increased growth with increasing age of the foraminifera. 3) Higher values are found in planktonic foraminifera and rotaliid larger foraminifera and can be explained by a slowing down of growth with increasing age. 4) A sudden change to lower d13C values at a distinct shell size occurs in molluscs and is possibly caused by the first reproductive event. 5) A low-high-Iow cycle in calcareous algae is possibly caused by variations in the stage of calcification or growth. 6) A positive correlation between d18O and d13C values is found in some hermatypic corals, all ahermatypic corals, in the septa of Nautilus and in the otoliths of fish. In hermatypic corals from tropical areas, this correlation is the result of the inverse relationship between temperature and light caused by summer cloud cover; in other groups it is inferred to be due to metabolic processes. 7) A negative correlation between d18O and d13C values found in hermatypic corals from the subtropics is explained by the sympathetic relationship between temperature and light in these latitudes. These trends show that the carbon isotope fractionation is controlled by the biology of the respective carbonate producing organisms. Thus, the carbon isotope distribution can provide information on the symbiont-host relationship, on metabolic processes and calcification and growth stages during ontogenesis of calcareous marine organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty sediment samples from Tortonian to Pleistocene age of five ODP locations (Holes 650A, 651A, and 652A, and Sites 654 and 655) in the Marsili Basin, Vavilov Basin, and Sardinia Margin (Tyrrhenian Sea) were studied by organic geochemical methods including total organic carbon determination, Rock-Eval pyrolysis, bitumen extraction, pyrolysis-gas chromatography, and organic petrography. Six organic facies, including open ocean anoxia with variable terrestrial input, oxic open ocean, oxic tidal flat, mildly oxic lagoon, and anoxic lacustrine algal-bacterial mat environments, have been recognized in these sediments. The sediments below 500 m in Sardinia Margin are mature for significant hydrocarbon generation. Possible mature source-rock (Type I and IIB/III kerogen) and migrated bitumen occur in the deeper part of the section in Vavilov Basin and Sardinia Margin sediments. Sporadic sapropel formation observed in the studied Pliocene-Pleistocene sediment section is probably controlled by organic productivity due to nutrient supply by the rivers and terrestrial input associated with open ocean anoxia or anoxia caused by the material balance between rate of organic matter supplied by turbidites and organic matter consumption. Pliocene and Pleistocene sapropels are mostly immature and lie within Type II-III (precisely as IIA-IIB and IIB source rocks) kerogen maturation path.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured respiration, egg production and fecal pellet production of five common copepod species, when fed on suspended or aggregated food from two mesocosm, + NP and + NPSi. We hypothetised that calanoid copepods (Temora longicornis, Acartia spp., Centropages spp.) would feed mainly on suspended food, and have low respiration and egestion rates when food was only available as aggregates, while harpacticoids and Oncaea spp. would mainly feed on aggregated food and have low metabolic rates when only suspended food was available. Copepods were collected from the lagoon, and adapted to experimental conditions for 24 h. Food suspension was collected from the mesocosms, and either offered to copepods directly (suspended food) or after rotating in a plankton wheel until most phytoplankton was aggregated together (aggregated food). After 24-h incubation we counted the produced eggs and pellets, and measured copepod respiration using microelectrodes.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative contribution of soft bottoms to the community metabolism (primary production, respiration and net calcification) of a barrier reef flat has been investigated at Moorea (French Polynesia). Community metabolism of the sedimentary area was estimated using in situ incubations in perspex chambers, and compared with estimates of community metabolism of the whole reef flat obtained using a Lagrangian technique (Gattuso et al., 1996. Carbon flux in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar. Ecol. Prog. Ser. 145, 109-121). Net organic carbon production (E), respiration (R) and net calcification (G) of sediments were measured by seven incubations performed in triplicate at different irradiance. Respiration and environmental parameters were also measured at four randomly selected additional stations. A model of Photosynthesis-irradiance allowed to calculate oxygen (O2), organic carbon (CO2) and calcium carbonate (CaCO3) evolution from surface irradiance during a diel cycle. As chlorophyll a content of the sediment was not significantly different between stations, primary production of the sediment was considered as homogeneous for the whole lagoon. Thus, carbon production at the test station can be modelled from surface light irradiance. The modelled respiration was two times higher at the test station than the mean respiration of the barrier reef, and thus underestimated sediment contribution to excess production. Sediments cover 40-60% of the surface and accounted for 2.8-4.1% of organic carbon excess production estimated with the modelled R and 21-32% when mean R value was considered. The sedimentary CaCO3 budget was a very minor component of the whole reef budget.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We here present a compilation of planktic and benthic 14C reservoir ages for the Last Glacial Maximum (LGM) and early deglacial from 11 key sites of global ocean circulation in the Atlantic and Indo-Pacific Ocean. The ages were obtained by 14C plateau tuning, a robust technique to derive both an absolute chronology for marine sediment records and a high-resolution record of changing reservoir/ventilation ages (Delta14C values) for surface and deep waters by comparing the suite of planktic 14C plateaus of a sediment record with that of the atmospheric 14C record (Sarnthein et al., 2007, doi:10.1029/173GM13). Results published thus far used as atmospheric 14C reference U/Th-dated corals, the Cariaco planktic record, and speleothems (Fairbanks et al., 2005, doi:10.1016/j.quascirev.2005.04.007; Hughen et al., 2006, doi:10.1016/j.quascirev.2006.03.014; Beck et al., 2001, doi:10.1023/A:1008175728826). We have now used the varve-counted atmospheric 14C record of Lake Suigetsu terrestrial macrofossils (Ramsey et al., 2012, doi:10.1126/science.1226660) to recalibrate the boundary ages and reservoir ages of the seven published records directly to an atmospheric 14C record. In addition, the results for four new cores and further planktic results for four published records are given. Main conclusions from the new compilation are: (1) The Suigetsu atmospheric 14C record on its varve counted time scale reflects all 14C plateaus, their internal structures and relative length previously identified, but implies a rise in the average 14C plateau age by 200-700 14C yr during LGM and early deglacial times. (2) Based on different 14C ages of coeval atmospheric and planktic 14C plateaus, marine surface water Delta14C may have temporarily dropped to an equivalent of ~0 yr in low-latitude lagoon waters, but reached >2500 14C yr both in stratified subpolar waters and in upwelled waters such as in the South China Sea. These values differ significantly from a widely assumed constant global planktic Delta14C value of 400 yr. (3) Suites of deglacial planktic Delta14C values are closely reproducible in 14C records measured at neighboring core sites. (4) Apparent deep-water 14C ventilation ages (equivalents of benthic Delta14C), deduced from the sum of planktic Delta14C and coeval benthic-planktic 14C differences, vary from 500 up to >5000 yr in LGM and deglacial ocean basins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study sites. Samples of surface water were taken from 4 coastal lagoons on the Yucatan Peninsula in Mexico: Celestun (20° 45' N - 90° 22' W), Chelem (21° 15' N - 89° 45' W), Rosada Lagoon (21º 19' N - 89º 19' W), and Sabancuy Estuary (18° 58' N - 91° 12' W). The sampling was performed from august to October of 2011 (Chelem 08/24; Laguna Rosada 09/06; Celestún 09/28; Sabancuy 10/25). The sampling was random without replacement and 10 samples of surface water were collected along a transect parallel to the coastal axis. Samples were deposited in sterile plastic bottles and conserved in refrigeration at 4°C. All samples were processed within 24 hours after sampling. According to the Mexican laws and regulations no permissions are required to obtain water and sediment samples from open public areas. Analysis of environmental and physicochemical parameters. Determinations of the environmental parameters were performed with a Hach 5465000 model 156 multi-parameter measuring instrument. The Lorenzen method was used to determine chlorophyll-a (21) with 90% acetone and the concentration was calculated according to the formula: Chla= 27.63 (OD665o - OD665a)(VA)/VM x L Where, OD665o: absorbance at 665 nm before acidification; OD665a: absorbance at 665 nm after acidification; VA: volume (ml) of acetone for extraction; VM: volume (ml) of filtered water; L: length (cm) of the photometric cell. Determinations of the physicochemical parameters (silicates, phosphates, nitrates, nitrites and ammonia) were performed using the spectrophotometric techniques described and modified by Strickland and Parsons (1972).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some predictions of how ocean acidification (OA) will affect coral reefs assume a linear functional relationship between the ambient seawater aragonite saturation state (Omega a) and net ecosystem calcification (NEC). We quantified NEC in a healthy coral reef lagoon in the Great Barrier Reef during different times of the day. Our observations revealed a diel hysteresis pattern in the NEC versus Omega a relationship, with peak NEC rates occurring before the Omega a peak and relatively steady nighttime NEC in spite of variable Omega a. Net ecosystem production had stronger correlations with NEC than light, temperature, nutrients, pH, and Omega a. The observed hysteresis may represent an overlooked challenge for predicting the effects of OA on coral reefs. If widespread, the hysteresis could prevent the use of a linear extrapolation to determine critical Omega a threshold levels required to shift coral reefs from a net calcifying to a net dissolving state.