987 resultados para Jet lag
Resumo:
The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz (HSZG) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description (see [10-12]). While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated in Rossendorf. In the current paper, the basic concepts for CFD modelling are described and feasibility studies are presented. The model capabilities are demonstrated via complex flow situations, where a plunging jet agitates insulation debris. © Carl Hanser Verlag, München.
Resumo:
The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus), Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. Ollrien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as ?i and q? with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of assigning a disruption probability to every plasma input pattern. The second method determines the novelty of an input pattern by calculating the probability density distribution of successful plasma patterns that have been run at JET. The density distribution is represented as a mixture distribution, and its parameters arc determined using the Expectation-Maximisation method. If the dataset, used to determine the distribution parameters, covers sufficiently well the machine operational space. Then, the patterns flagged as novel can be regarded as patterns belonging to a disrupting plasma. Together with these methods, a network has been designed to predict the vertical forces, that a disruption can cause, in order to avoid that too dangerous plasma configurations are run. This network can be run before the pulse using the pre-programmed plasma configuration or on line becoming a tool that allows to stop dangerous plasma configuration. All these methods have been implemented in real time on a dual Pentium Pro based machine. The Disruption Prediction and Prevention System has shown that internal plasma parameters can be determined on-line with a good accuracy. Also the disruption detection algorithms showed promising results considering the fact that JET is an experimental machine where always new plasma configurations are tested trying to improve its performances.
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
Background - When a moving stimulus and a briefly flashed static stimulus are physically aligned in space the static stimulus is perceived as lagging behind the moving stimulus. This vastly replicated phenomenon is known as the Flash-Lag Effect (FLE). For the first time we employed biological motion as the moving stimulus, which is important for two reasons. Firstly, biological motion is processed by visual as well as somatosensory brain areas, which makes it a prime candidate for elucidating the interplay between the two systems with respect to the FLE. Secondly, discussions about the mechanisms of the FLE tend to recur to evolutionary arguments, while most studies employ highly artificial stimuli with constant velocities. Methodology/Principal Finding - Since biological motion is ecologically valid it follows complex patterns with changing velocity. We therefore compared biological to symbolic motion with the same acceleration profile. Our results with 16 observers revealed a qualitatively different pattern for biological compared to symbolic motion and this pattern was predicted by the characteristics of motor resonance: The amount of anticipatory processing of perceived actions based on the induced perspective and agency modulated the FLE. Conclusions/Significance - Our study provides first evidence for an FLE with non-linear motion in general and with biological motion in particular. Our results suggest that predictive coding within the sensorimotor system alone cannot explain the FLE. Our findings are compatible with visual prediction (Nijhawan, 2008) which assumes that extrapolated motion representations within the visual system generate the FLE. These representations are modulated by sudden visual input (e.g. offset signals) or by input from other systems (e.g. sensorimotor) that can boost or attenuate overshooting representations in accordance with biased neural competition (Desimone & Duncan, 1995).
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
If humans monitor streams of rapidly presented (approximately 100-ms intervals) visual stimuli, which are typically specific single letters of the alphabet, for two targets (T1 and T2), they often miss T2 if it follows T1 within an interval of 200-500 ms. If T2 follows T1 directly (within 100 ms; described as occurring at 'Lag 1'), however, performance is often excellent: the so-called 'Lag-1 sparing' phenomenon. Lag-1 sparing might result from the integration of the two targets into the same 'event representation', which fits with the observation that sparing is often accompanied by a loss of T1-T2 order information. Alternatively, this might point to competition between the two targets (implying a trade-off between performance on T1 and T2) and Lag-1 sparing might solely emerge from conditional data analysis (i.e. T2 performance given T1 correct). We investigated the neural correlates of Lag-1 sparing by carrying out magnetoencephalography (MEG) recordings during an attentional blink (AB) task, by presenting two targets with a temporal lag of either 1 or 2 and, in the case of Lag 2, with a nontarget or a blank intervening between T1 and T2. In contrast to Lag 2, where two distinct neural responses were observed, at Lag 1 the two targets produced one common neural response in the left temporo-parieto-frontal (TPF) area but not in the right TPF or prefrontal areas. We discuss the implications of this result with respect to competition and integration hypotheses, and with respect to the different functional roles of the cortical areas considered. We suggest that more than one target can be identified in parallel in left TPF, at least in the absence of intervening nontarget information (i.e. masks), yet identified targets are processed and consolidated as two separate events by other cortical areas (right TPF and PFC, respectively).
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
Audit reporting lag continues to remain an issue of significant interest to regulators, financial statement users, public companies, and auditors. The SEC has recently acted to reduce the deadline for filing annual and quarterly financial statements. Such focus on audit reporting lag arises because, as noted by the Financial Accounting Standards Board, relevance and reliability are the two primary qualities of accounting information; and, to be relevant, information has to be timely. In my dissertation, I examine three issues related to the audit report lag. The first essay focuses on the association between audit report lag and the meeting or beating of earnings benchmarks. I do not find any association between audit report lag and just meeting or beating earnings benchmarks. However, I find that longer audit report lag is negatively associated with the probability of using discretionary accruals to meet or beat earnings benchmarks. We can infer from these results that audit effort, for which audit report lag is a proxy, reduces earnings management. The second part of my dissertation examines the association between types of auditor changes and audit report lag. I find that the resignation of an auditor is associated longer audit report lag compared to the dismissal of an auditor. I also find a significant positive association between the disclosure of a reportable event and audit report lag. The third part of my dissertation investigates the association between senior executive changes and audit report lag. I find that audit report lag is longer when client firms have a new CEO or CFO. Further, I find that audit report lag is longer when the new executive is someone from outside the firm. These results provide empirical evidence about the importance of senior management in the financial reporting process.
Resumo:
The purpose of this thesis was to identify the optimal design parameters for a jet nozzle which obtains a local maximum shear stress while maximizing the average shear stress on the floor of a fluid filled system. This research examined how geometric parameters of a jet nozzle, such as the nozzle's angle, height, and orifice, influence the shear stress created on the bottom surface of a tank. Simulations were run using a Computational Fluid Dynamics (CFD) software package to determine shear stress values for a parameterized geometric domain including the jet nozzle. A response surface was created based on the shear stress values obtained from 112 simulated designs. A multi-objective optimization software utilized the response surface to generate designs with the best combination of parameters to achieve maximum shear stress and maximum average shear stress. The optimal configuration of parameters achieved larger shear stress values over a commercially available design.
Resumo:
For the first time, the Z0 boson angular distribution in the center-of-momentum frame is measured in proton-proton collisions at [special characters omitted] = 7 TeV at the CERN LHC. The data sample, recorded with the CMS detector, corresponds to an integrated luminosity of approximately 36 pb–1 . Events in which there is a Z0 and at least one jet, with a jet transverse momentum threshold of 20 GeV and absolute jet rapidity less than 2.4, are selected for the analysis. Only the Z0's muon decay channel is studied. Within experimental and theoretical uncertainties, the measured angular distribution is in agreement with next-to-leading order perturbative QCD predictions.
Resumo:
This study analyzed trends in marital behavior for unwed mothers who gave birth between 1960 and 2004. With nationally representative data on 15,353 White and Black unmarried mothers, results indicated that mothers who gave birth after 1989 were waiting much longer to marry than were mothers giving birth before 1968. The most pronounced delays were found immediately after a birth. Over the study period, the cumulative proportion of women who married within three years of a birth decreased for Whites by 27% and for Blacks by 60%. Findings underscore the separation that has developed between first births and first marriages in the United States, and they highlight the older ages at which children are experiencing a transition to marriage. © National Council on Family Relations, 2011.
Resumo:
Quelques sites archéologiques comme Olympie, Stymphalos et Olynthe possèdent respectivement un répertoire faisant l’étude des armes de jet retrouvées durant une série de campagnes de fouilles archéologiques. Parmi ces indexes, figurent fréquemment des pointes de flèche, des balles de fronde et des saurotères (contrepoids de lance ou de javelot) provenant de différentes périodes historiques gréco-romaines. À travers les 20e et 21e siècle de notre ère, des spécialistes comme D. Robinson (1931), A. Snodgrass (1964), H. Baitinger (2001), C. Hagerman (2014) dédièrent une partie de leur expertise pour produire des synthèses sur ces objets jadis négligés. Ainsi, ils parvinrent à créer de grandes encyclopédies commentées composées de projectiles retrouvés en sol grec. À l’aide de ces bases de données, les archéologues militaires sont en mesure d’établir des datations et l’origine prétendue de certains types de projectiles. Jusqu’en 2015, les artéfacts militaires trouvés sur le site archéologique d’Argilos n’avaient jamais fait l’objet d’une étude de synthèse. D’abord, inspiré par de publications semblables, ces projectiles furent soumis à un inventaire sous forme de catalogue. Au total, deux types de balles de fronde en plomb, onze types de pointes de flèche et un type de saurotère furent identifiés. Finalement, ce nouveau contenu fut assujetti à des analyses comparatives avec d’autres sites archéologiques possédant des données similaires. Les conclusions découlant de ces analogies donnèrent naissance à la première typologie des armes de jet argilienne. Certes, les analyses se heurtèrent à certains obstacles, notamment à une compréhension de la quasi-inexistence d'une pointe de flèche typiquement "grecque" et à la confusion systématique quant à la distinction entre un saurotère et une pointe de javelot, voire possiblement un carreau de gastraphétès (une sorte d’arbalète imposante utilisée lors de sièges durant le 4e siècle av. J.-C.). En partie, ceci découle de l'historique d'échanges entre la Grèce et les autres peuples méditerranéens, balkaniques et orientaux. En outre, de nombreuses réformes militaires des périodes archaïque et classique provoquèrent une évolution constante sur les aspects stratégiques et les tactiques militaires. Considérant ces facteurs parmi tant d'autres et le fait qu'Argilos ait été une fondation grecque en territoire thraco-macédonien, la possibilité d'influence "étrangère" devient alors prépondérante sur la typologie des projectiles argiliens publiée dans le présent mémoire. Avec beaucoup d’espoir, nous croyons sans équivoque que ce travail de recherche contribuera grandement non seulement à l’histoire d’Argilos, mais aussi à l’étude des projectiles en Grèce du nord.
Resumo:
Cigar Lake is a high-grade uranium deposit, located in northern Saskatchewan, Canada. In order to extract the uranium ore remotely, thus ensuring minimal radiation dose to workers and also to access the ore from stable ground, the Jet Boring System (JBS) was developed by Cameco Corporation. This system uses a high-powered water jet to remotely excavate cavities. Survey data is required to determine the final shape, volume, and location of the cavity for mine planning purposes and construction. This paper provides an overview of the challenges involved in remotely surveying a JBS-mined cavity and studies the potential use of a time-of-flight (ToF) camera for remote cavity surveying. It reports on data collected and analyzed from inside an experimental environment as well as on real data acquired on site from the Cigar Lake and Rabbit Lake mines.
Resumo:
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.