967 resultados para Jennifer Craig Pixley


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Opioid drugs, such as morphine, are among the most effective analgesics available. However, their utility for the treatment of chronic pain is limited by side effects including tolerance and dependence. Morphine acts primarily through the mu-opioid receptor (MOP-R) , which is also a target of endogenous opioids. However, unlike endogenous ligands, morphine fails to promote substantial receptor endocytosis both in vitro, and in vivo. Receptor endocytosis serves at least two important functions in signal transduction. First, desensitization and endocytosis act as an "off" switch by uncoupling receptors from G protein. Second, endocytosis functions as an "on" switch, resensitizing receptors by recycling them to the plasma membrane. Thus, both the off and on function of the MOP-R are altered in response to morphine compared to endogenous ligands. To examine whether the low degree of endocytosis induced by morphine contributes to tolerance and dependence, we generated a knockin mouse that expresses a mutant MOP-R that undergoes morphine-induced endocytosis. Morphine remains an excellent antinociceptive agent in these mice. Importantly, these mice display substantially reduced antinociceptive tolerance and physical dependence. These data suggest that opioid drugs with a pharmacological profile similar to morphine but the ability to promote endocytosis could provide analgesia while having a reduced liability for promoting tolerance and dependence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Aberrant dopaminergic signaling is a critical determinant in multiple psychiatric disorders, and in many disease states, dopamine receptor number is altered. Here we identify a molecular mechanism that selectively targets D2 receptors for degradation after their activation by dopamine. The degradative fate of D2 receptors is determined by an interaction with G protein coupled receptor-associated sorting protein (GASP). As a consequence of this GASP interaction, D2 responses in rat brain fail to resensitize after agonist treatment. Disruption of the D2-GASP interaction facilitates recovery of D2 responses, suggesting that modulation of the D2-GASP interaction is important for the functional down-regulation of D2 receptors.