976 resultados para Ionizing radiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200–350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantitative study was made about the effects caused by ionizing irradiation on materials used for dental restoration (amalgams, compound resins and compomere), aiming to alleviate in bearers of head and neck cancer, the possible harmful effects of radiotherapy perceived when the repaired teething is within the radiation field. Research also encourages further studies for new alternative materials to be used in dental repair of patients submitted to radiotherapy for head and neck cancer. Test samples were submitted to a gamma radiation beam coming from a cobalt-therapy source and analyzed according to the X-ray fluorescence technique, comparing the chemical composition of the samples before and after irradiation. Radiation detectors such as an ionization chamber and a Geiger-Muller were used to measure the rate of residual dose. Gamma spectrometry with Nal detectors was also performed on the same samples. Results showed that there was no significant change in the chemical composition and that at post-irradiation, samples did not exhibit radiation emission, that is to say they had not become radioactive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major challenges for a mission to the Jovian system is the radiation tolerance of the spacecraft (S/C) and the payload. Moreover, being able to achieve science observations with high signal to noise ratios (SNR), while passing through the high flux radiation zones, requires additional ingenuity on the part of the instrument provider. Consequently, the radiation mitigation is closely intertwined with the payload, spacecraft and trajectory design, and requires a systems-level approach. This paper presents a design for the Io Volcano Observer (IVO), a Discovery mission concept that makes multiple close encounters with Io while orbiting Jupiter. The mission aims to answer key outstanding questions about Io, especially the nature of its intense active volcanism and the internal processes that drive it. The payload includes narrow-angle and wide-angle cameras (NAC and WAC), dual fluxgate magnetometers (FGM), a thermal mapper (ThM), dual ion and neutral mass spectrometers (INMS), and dual plasma ion analyzers (PIA). The radiation mitigation is implemented by drawing upon experiences from designs and studies for missions such as the Radiation Belt Storm Probes (RBSP) and Jupiter Europa Orbiter (JEO). At the core of the radiation mitigation is IVO's inclined and highly elliptical orbit, which leads to rapid passes through the most intense radiation near Io, minimizing the total ionizing dose (177 krads behind 100 mils of Aluminum with radiation design margin (RDM) of 2 after 7 encounters). The payload and the spacecraft are designed specifically to accommodate the fast flyby velocities (e.g. the spacecraft is radioisotope powered, remaining small and agile without any flexible appendages). The science instruments, which collect the majority of the high-priority data when close to Io and thus near the peak flux, also have to mitigate transient noise in their detectors. The cameras use a combination of shielding and CMOS detectors with extremely fast readout to mi- imize noise. INMS microchannel plate detectors and PIA channel electron multipliers require additional shielding. The FGM is not sensitive to noise induced by energetic particles and the ThM microbolometer detector is nearly insensitive. Detailed SNR calculations are presented. To facilitate targeting agility, all of the spacecraft components are shielded separately since this approach is more mass efficient than using a radiation vault. IVO uses proven radiation-hardened parts (rated at 100 krad behind equivalent shielding of 280 mils of Aluminum with RDM of 2) and is expected to have ample mass margin to increase shielding if needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fields. We show that produced THz signals interact with free electron trajectories and thus significantly influence further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the observed strong spectral broadening of the generated THz field. Weshow that diffraction of the generated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for the self-action mechanism in 2D and 3D geometries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fields. We show that produced THz signals interact with free electron trajectories and thus significantly influence further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the observed strong spectral broadening of the generated THz field. We show that diffraction of the generated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for the self-action mechanism in 2D and 3D geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation, especially ultraviolet A (UVA) and ultraviolet B (UVB), can cause damage to the human body, and exposure to the radiation may vary according to the geographical location, time of year and other factors. The effects of UVA and UVB radiation on organisms range from erythema formation, through tanning and reduced synthesis of macromolecules such as collagen and elastin, to carcinogenic DNA mutations. Some studies suggest that, in addition to the radiation emitted by the sun, artificial sources of radiation, such as commercial lamps, can also generate small amounts of UVA and UVB radiation. Depending on the source intensity and on the distance from the source, this radiation can be harmful to photosensitive individuals. In healthy subjects, the evidence on the danger of this radiation is still far from conclusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effectiveness of acupuncture in minimizing the severity of radiation-induced xerostomia in patients with head and neck cancer. A total of 24 consecutive patients receiving > 5000 cGy radiotherapy (RT) involving the major salivary glands bilaterally were assigned to either the preventive acupuncture group (PA, n = 12), treated with acupuncture before and during RT, or the control group (CT, n = 12), treated with RT and not receiving acupuncture. After RT completion, clinical response was assessed in all patients by syalometry, measuring the resting (RSFR) and stimulated (SSFR) salivary flow rates, and by the visual analogue scale (VAS) regarding dry mouth-related symptoms. Statistical analyses were performed with repeated-measures using a mixed-effect modeling procedure and analysis of variance. An alpha level of 0.05 was accepted for statistical significance. Although all patients exhibited some degree of impairment in salivary gland functioning after RT, significant differences were found between the groups. Patients in the PA group showed improved salivary flow rates (RSFR, SSFR; p < 0.001) and decreased xerostomia-related symptoms (VAS, p < 0.05) compared with patients in the CT group. Although PA treatment did not prevent the oral sequelae of RT completely, it significantly minimized the severity of radiation-induced xerostomia. The results suggest that acupuncture focused in a preventive approach can be a useful therapy in the management of patients with head and neck cancer undergoing RT.