981 resultados para Ion Affinity-chromatography
Resumo:
Chondroitin sulfate (CS) is a naturally glycosaminoglycan found in the extracellular matrix of connective tissues and it may be extracted and purified those tissues. CS is involved in various biological functions, which may be related to the having structural variability, despite the simplicity of the linear chain structure from this molecule. Researches in biotechnology and pharmaceutical field with wastes from aquaculture has been developed in Brazil. In recent decades, tilapia (Oreochromis niloticus), native fish from Africa, has been one of the most cultivated species in various regions of the world, including Brazil. The tilapia farming is a cost-effective activity, however, it generates large amount of wastes that are discarded by producers. It is understood that waste from tilapia can be used in research as a source of molecules with important biotechnological applications, which also helps in reducing environmental impacts and promote the development of an ecofriendly activity. Thus, nile tilapia viscera were subjected to proteolysis, then the glycosaminoglycans were complexed with ion exchange resin (Lewatit), it was fractionated with increasing volumes of acetone and purified by ion exchange chromatography DEAE-Sephacel. Further, the fraction was analyzed by agarose gel electrophoresis and nuclear magnetic resonance (NMR). The electrophoretic profile of the compound together the analysis of 1H NMR spectra and the HSQC correlation allow to affirm that the compound corresponds to a molecule like chondroitin sulfate. MTT assay was used to assess cell viability in the presence of CS tilapia isolated and showed that the compound is not cytotoxic to normal cells such as cells from the mouse embryo fibroblast (3T3). Then, this compound was tested for the ability to reduce the influx of leukocytes in model of acute peritonitis (in vivo) induced by sodium thioglycolate. In this context, it was done total and differential leukocytes counting in the blood and peritoneal fluid collected respectively from vena cava and the peritoneal cavity of the animals subjected to the experiment. The chondroitin sulfate for the first time isolated from tilapia (CST ) was able to reduce the migration of leukocytes to the peritoneal cavity of inflamed mice until 80.4 per cent at a dose 10µg/kg. The results also show that there was a significant reduction (p<0.001) of the population of polymorphonuclear leukocytes from peritoneal cavity in the three tested doses (0.1µg/kg; 1µg/kg and 10µg/kg) when it was compared to the positive control (just thioglycolate). Therefore, since the CST structure and mechanism of action has been completely elucidated, this compound may have potential for therapeutic use in inflammatory diseases
Resumo:
Inflammation is combined of a vascular and a cellular reaction, resulting in different cells and tissue responses, both the intravascular and extravascular environment. As the inflammatory process occurs, coagulation proteases, in particular thrombin (FIIa), are able to initiate various cellular responses in vascular biology and therefore is often observed activation of other biological systems, leading to complications during an event inflammatory, such as thrombosis and angiogenesis. Thus, antagonists molecules of these events are interesting models for the development of novel anti-inflammatory drugs. Thereby, it is worth stressing the glycosaminoglycans (GAGs), which are able to interact with several proteins involved in important biological processes, including inflammation and coagulation. Therefore, this study aimed to evaluate the anti-inflammatory, antithrombotic and anti-angiogenic potentials, as well anticoagulant of a dermatan sulfate-like GAG (DS) extracted from the Litopenaeus vannamei cephalotorax. The compound was obtained after proteolysis and purification by ion-exchange chromatography. After total digestion by DS-like compounds digesting lyases (chondroitinase ABC), the DS-like nature was revealed, and then called DSL. The shrimp compound showed reduced anticoagulant effect by the aPTT assay, but high anti-IIa activity, directly and through heparin cofactor II. On inflammation, the compound had a significant inhibitory effect with the reduction of proinflammatory cytokines. Potential Inhibitory were reported in the antithrombotic and anti-angiogenic assay, the latter being dose dependent. As for anti-hemostatic activity, the polysaccharides did not induced significant bleeding effect. Thus, the results shown by the shrimp DS-like compound indicate this glycosaminoglycan as a biotechnology target with prospects for the development of new multipotent drugs.
Resumo:
For the first time, short-chain organic acids are described in interstitial waters from sediments and lithified materials in a backarc setting. Organic acids in interstitial waters from the Tonga forearc region were also analyzed and compared with previous organic acid analyses from the Mariana and Bonin forearc interstitial waters. In the Tonga backarc setting, propionate typically dominates the organic acid assemblage, and organic acids are a consistent feature of these interstitial waters. The persistent presence of ammonia and the dominance of propionate over formate in the backarc interstitial waters suggest that the organic acids in this setting have their origin in reductive deamination of amino acids derived from sedimentary proteinaceous material. The organic acid assemblage revealed in the samples from Hole 841B in the Tonga forearc are similar to the organic acid assemblage detected in the Mariana forearc, that is, formate dominates the assemblage over acetate or propionate. These forearc organic acid assemblages may both have formed by a similar mechanism.