968 resultados para Interdisciplinary approach to knowledge
Resumo:
BACKGROUND: Patients requiring surgical skin excision after massive weight loss are challenging and require an individualized approach. The characteristic abdominal deformity includes a draping apron of panniculus, occasionally associated with previous transverse surgical scars from open gastric bypass surgery in the upper abdomen, which compromise blood supply of the abdominal skin. METHODS: We propose four different surgical techniques for safe abdominal body contouring in the presence of such scars: (1) a limited abdominoplasty of the lower abdomen is performed, and then contouring is completed by a reversed abdominoplasty with scar positioning in the submammary folds; (2) a one-stage procedure characterized by skin resection in the upper and lower abdomen, in which blood supply of the skin island between the submammary and suprapubic incisions is ensured by periumbilical perforators; (3) a perforator-sparing abdominoplasty with selective dissection of periumbilical abdominal wall perforators to secure flap blood supply and allow complete flap undermining up to the xyphoid process; (4) for patients with extensive excess skin, a modified Fleur-de-Lys abdominoplasty performed in such a way that the old transverse scar is transformed into a vertical scar. RESULTS: The treatment of four exemplary patients is described. All techniques yielded good esthetic and functional results through preservation of abdominal blood supply. CONCLUSION: Through an individualized approach, adequate abdominal body contouring can be performed safely, even in the presence of transverse surgical scars in the upper abdomen.
Resumo:
Social businesses present a new paradigm to capitalism, in which private companies, non-profit organizations and civil society create a new type of business with the main objective of solving social problems with financial sustainability and efficiency through market mechanisms. As any new phenomenon, different authors conceptualize social businesses with distinct views. This article aims to present and characterize three different perspectives of social business definitions: the European, the American and that of the emerging countries. Each one of these views was illustrated by a different Brazilian case. We conclude with the idea that all the cases have similar characteristics, but also relevant differences that are more than merely geographical. The perspectives analyzed in this paper provide an analytical framework for understanding the field of social businesses. Moreover, the cases demonstrate that in the Brazilian context the field of social business is under construction and that as such it draws on different conceptual influences to deal with a complex and challenging reality.
Resumo:
The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method
Resumo:
An alternative approach to the fundamental general physics concepts has been proposed. We demonstrate that the electrostatic potential energy of a discrete or a continuous system of charges should be stored by the charges and not the field. It is found that there is a possibility that any electric field has no energy density, as well as magnetic field. It is found that there is no direct relation between the electric or magnetic energy and photons. An alternative derivation of the blackbody radiation formula is proposed. It is also found that the zero-point of energy of electromagnetic radiation may not exist.
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3 A resolution is discussed.
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
Since 2007, the Interdisciplinary Ethics Platform (Ethos) of the University of Lausanne is leading an interdisciplinary reflection on the organ donation decision. On this basis, the project "Organ transplantation between the rhetoric of the gift and a biomedical view of the body" studies the logics at stake in the organ donation decision-making process. Results highlight many tensions within practices and public discourses in the field of organ donation and transplantation and suggest lines of inquiry for future adjustments.
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.
Resumo:
This paper relaxes the standard I(0) and I(1) assumptions typically stated in the monetary VAR literature by considering a richer framework that encompasses the previous two processes as well as other fractionally integrated possibilities. First, a timevarying multivariate spectrum is estimated for post WWII US data. Then, a structural fractionally integrated VAR (VARFIMA) is fitted to each of the resulting time dependent spectra. In this way, both the coefficients of the VAR and the innovation variances are allowed to evolve freely. The model is employed to analyze inflation persistence and to evaluate the stance of US monetary policy. Our findings indicate a strong decline in the innovation variances during the great disinflation, consistent with the view that the good performance of the economy during the 80’s and 90’s is in part a tale of good luck. However, we also find evidence of a decline in inflation persistence together with a stronger monetary response to inflation during the same period. This last result suggests that the Fed may still play a role in accounting for the observed differences in the US inflation history. Finally, we conclude that previous evidence against drifting coefficients could be an artifact of parameter restriction towards the stationary region. Keywords: monetary policy, inflation persistence, fractional integration, timevarying coefficients, VARFIMA. JEL Classification: E52, C32
Resumo:
A fundamental question in developmental biology is how tissues are patterned to give rise to differentiated body structures with distinct morphologies. The Drosophila wing disc offers an accessible model to understand epithelial spatial patterning. It has been studied extensively using genetic and molecular approaches. Bristle patterns on the thorax, which arise from the medial part of the wing disc, are a classical model of pattern formation, dependent on a pre-pattern of trans-activators and –repressors. Despite of decades of molecular studies, we still only know a subset of the factors that determine the pre-pattern. We are applying a novel and interdisciplinary approach to predict regulatory interactions in this system. It is based on the description of expression patterns by simple logical relations (addition, subtraction, intersection and union) between simple shapes (graphical primitives). Similarities and relations between primitives have been shown to be predictive of regulatory relationships between the corresponding regulatory factors in other Systems, such as the Drosophila egg. Furthermore, they provide the basis for dynamical models of the bristle-patterning network, which enable us to make even more detailed predictions on gene regulation and expression dynamics. We have obtained a data-set of wing disc expression patterns which we are now processing to obtain average expression patterns for each gene. Through triangulation of the images we can transform the expression patterns into vectors which can easily be analysed by Standard clustering methods. These analyses will allow us to identify primitives and regulatory interactions. We expect to identify new regulatory interactions and to understand the basic Dynamics of the regulatory network responsible for thorax patterning. These results will provide us with a better understanding of the rules governing gene regulatory networks in general, and provide the basis for future studies of the evolution of the thorax-patterning network in particular.