970 resultados para Interacting Phenotypes
Resumo:
The phase transition of Reissner-Nordstrom AdS(4) interacting with a massive charged scalar field has been further revisited. We found exactly one stable and one unstable quasinormal mode region for the scalar field. The two of them are separated by the first marginally stable solution.
Resumo:
Electron paramagnetic resonance measurements of NiCl(2)-4SC(NH(2))(2) reveal the low-energy spin dispersion, including a magnetic-field interval in which the two-magnon continuum is within k(B)T of the ground state, allowing a continuum of excitations over a range of k states, rather than only the k=0 single-magnon excitations. This produces a novel Y shape in the frequency-field EPR spectrum measured at T >= 1.5 K. Since the interchain coupling J(perpendicular to)< k(B)T, this shape can be reproduced by a single S=1 antiferromagnetic Heisenberg chain with a strong easy-plane single-ion anisotropy. Importantly, the combination of experiment and modeling we report herein demonstrates a powerful approach to probing spin dispersion in a wide range of interacting magnetic systems without the stringent sample requirements and complications associated with inelastic scattering experiments.
Resumo:
We adopt the Dirac model for graphene and calculate the Casimir interaction energy between a plane suspended graphene sample and a parallel plane perfect conductor. This is done in two ways. First, we use the quantum-field-theory approach and evaluate the leading-order diagram in a theory with 2+1-dimensional fermions interacting with 3+1-dimensional photons. Next, we consider an effective theory for the electromagnetic field with matching conditions induced by quantum quasiparticles in graphene. The first approach turns out to be the leading order in the coupling constant of the second one. The Casimir interaction for this system appears to be rather weak. It exhibits a strong dependence on the mass of the quasiparticles in graphene.
Resumo:
High-precision data of backward-angle elastic and quasielastic scattering for the weakly bound (6)Li projectile on (144)Sm target at deep-sub-barrier, near-, and above-barrier energies were measured. From the deep-sub-barrier data, the surface diffuseness of the nuclear interacting potential was studied. Barrier distributions were extracted from the first derivatives of the elastic and quasielastic excitation functions. It is shown that sequential breakup through the first resonant state of the (6)Li is an important channel to be included in coupled-channels calculations, even at deep-sub-barrier energies.
Resumo:
Context. The Abell 222 and 223 clusters are located at an average redshift z similar to 0.21 and are separated by 0.26 deg. Signatures of mergers have been previously found in these clusters, both in X-rays and at optical wavelengths, thus motivating our study. In X-rays, they are relatively bright, and Abell 223 shows a double structure. A filament has also been detected between the clusters both at optical and X-ray wavelengths. Aims. We analyse the optical properties of these two clusters based on deep imaging in two bands, derive their galaxy luminosity functions (GLFs) and correlate these properties with X-ray characteristics derived from XMM-Newton data. Methods. The optical part of our study is based on archive images obtained with the CFHT Megaprime/Megacam camera, covering a total region of about 1 deg(2), or 12.3 x 12.3 Mpc(2) at a redshift of 0.21. The X-ray analysis is based on archive XMM-Newton images. Results. The GLFs of Abell 222 in the g' and r' bands are well fit by a Schechter function; the GLF is steeper in r' than in g'. For Abell 223, the GLFs in both bands require a second component at bright magnitudes, added to a Schechter function; they are similar in both bands. The Serna & Gerbal method allows to separate well the two clusters. No obvious filamentary structures are detected at very large scales around the clusters, but a third cluster at the same redshift, Abell 209, is located at a projected distance of 19.2 Mpc. X-ray temperature and metallicity maps reveal that the temperature and metallicity of the X-ray gas are quite homogeneous in Abell 222, while they are very perturbed in Abell 223. Conclusions. The Abell 222/Abell 223 system is complex. The two clusters that form this structure present very different dynamical states. Abell 222 is a smaller, less massive and almost isothermal cluster. On the other hand, Abell 223 is more massive and has most probably been crossed by a subcluster on its way to the northeast. As a consequence, the temperature distribution is very inhomogeneous. Signs of recent interactions are also detected in the optical data where this cluster shows a ""perturbed"" GLF. In summary, the multiwavelength analyses of Abell 222 and Abell 223 are used to investigate the connection between the ICM and the cluster galaxy properties in an interacting system.
Resumo:
Twisted quantum field theories on the Groenewold-Moyal plane are known to be nonlocal. Despite this nonlocality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings between matter fields, or between matter fields and minimally coupled U(1) gauge fields are causal in this sense. On the other hand, interactions between matter fields and non-Abelian gauge fields violate this generalized causality. We derive the modified Feynman rules emergent from these features. They imply that interactions of matter with non-Abelian gauge fields are not Lorentz- and CPT-invariant.
Resumo:
We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultrahigh energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes, is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by a heavier nucleus, the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed.
Resumo:
In theories with universal extra dimensions, all standard model fields propagate in the bulk and the lightest state of the first Kaluza-Klein (KK) level can be made stable by imposing a Z(2) parity. We consider a framework where the lightest KK particle (LKP) is a neutral, extremely weakly interacting particle such as the first KK excitation of the graviton, while the next-to-lightest KK particle (NLKP) is the first KK mode of a charged right-handed lepton. In such a scenario, due to its very small couplings to the LKP, the NLKP is long-lived. We investigate the production of these particles from the interaction of high energy neutrinos with nucleons in the Earth and determine the rate of NLKP events in neutrino telescopes. Using the Waxman-Bahcall limit for the neutrino flux, we find that the rate can be as large as a few hundreds of events a year for realistic values of the NLKP mass.
Resumo:
In this paper we detail some results advanced in a recent letter [Prado et al., Phys. Rev. Lett. 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
Resumo:
We study collective scattering with Bose-Einstein condensates interacting with a high-finesse ring cavity. The condensate scatters the light of a transverse pump beam superradiantly into modes which, in contrast to previous experiments, are not determined by the geometrical shape of the condensate, but specified by a resonant cavity mode. Moreover, since the recoil-shifted frequency of the scattered light depends on the initial momentum of the scattered fraction of the condensate, we show that it is possible to employ the good resolution of the cavity as a filter selecting particular quantized momentum states.
Resumo:
We study rf spectroscopy of a lithium gas with the goal to explore the possibilities for photoemission spectroscopy of a strongly interacting p-wave Fermi gas. Radio-frequency spectra of quasibound p-wave molecules and of free atoms in the vicinity of the p-wave Feshbach resonance located at 159.15G are presented. The spectra are free of detrimental final-state effects. The observed relative magnetic-field shifts of the molecular and atomic resonances confirm earlier measurements realized with direct rf association. Furthermore, evidence of molecule production by adiabatically ramping the magnetic field is observed. Finally, we propose the use of a one-dimensional optical lattice to study anisotropic superfluid gaps as most direct proof of p-wave superfluidity.
Resumo:
We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landau's theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single-and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Resumo:
We investigate entanglement of strongly interacting fermions in spatially inhomogeneous environments. To quantify entanglement in the presence of spatial inhomogeneity, we propose a local-density approximation (LDA) to the entanglement entropy, and a nested LDA scheme to evaluate the entanglement entropy on inhomogeneous density profiles. These ideas are applied to models of electrons in superlattice structures with different modulation patterns, electrons in a metallic wire in the presence of impurities, and phase-separated states in harmonically confined many-fermion systems, such as electrons in quantum dots and atoms in optical traps. We find that the entanglement entropy of inhomogeneous systems is strikingly different from that of homogeneous systems.
Resumo:
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully nonempirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.