1000 resultados para Integrated Ocean Drilling Program


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined diatom assemblages in a series of remarkable laminated diatomaceous ooze (LDO) horizons in the marine sediments from Integrated Ocean Drilling Program (IODP) Site U1304 to reconstruct the middle-to-late Pleistocene paleoceanographic evolution of the northern North Atlantic Ocean. Four confirmed diatom biohorizons combined with calcareous nannofossil and paleomagnetic stratigraphies established the chronological framework for the material. The planktonic, araphid, needle-like species Thalassiothrix longissima was the greatest contributor to the LDO facies. From the results of a principal component analysis using the percent abundances of 65 significant (p = 5%) diatom taxa, except for Tx. longissima, which was extremely dominant in almost all horizons observed, we identified two principal component (PC) axes. Taxa probably associated with the stratigraphic distribution of the major zonal marker Neodenticula seminae (ranging from 1.26 to 0.84 Ma in this ocean) loaded on PC1 with a high value. PC2 was related to the ocean surface temperature. The stratigraphic variability of the PC2 score indicated that switching between warm- and cold-water assemblages occurred concurrently with LDO deposition (or extreme Tx. longissima dominance) episodes in several horizons (particularly after 0.84 Ma), suggesting that the Subarctic Convergence (SAC) oceanic front passed over Site U1304 during Pleistocene glacial/interglacial cycles. Our floral evidence supports the model of nearly monospecific LDO formation caused by the enhanced physical accumulation of particular diatoms such as Tx. longissima. On the other hand, Nd. seminae, which probably contributes to spring phytoplankton blooms in the modern ocean, was present only between 1.26 and 0.84 Ma in this area. Thus, we infer that the main contributor of export flux in the regional annual primary production cycle would have shifted drastically from one of a spring phytoplankton bloom leader (Nd. seminae) to minor but mass dump assemblages (Tx. longissima etc.) in the mid-Pleistocene.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase relations of natural volcaniclastic sediments from the west Pacific Ocean were investigated experimentally at conditions of 3-6 GPa and 800-900 °C with 10 wt.% added H2O (in addition to ~ 10 wt.% structurally-bound H2O) to induce hydrous melting. Volcaniclastic sediments are shown to produce a sub-solidus assemblage of garnet, clinopyroxene, biotite, quartz/coesite and the accessory phases rutile ± Fe-Ti oxide ± apatite ± monazite ± zircon. Hydrous melt appears at temperatures exceeding 800-850 °C, irrespective of pressure. The melt-producing reaction consumes clinopyroxene, biotite and quartz/coesite and produces orthopyroxene. These phase relations differ from those of pelagic clays and K-bearing mid ocean ridge basalts (e.g. altered oceanic crust) that contain phengite, rather than biotite, as a sub-solidus phase. Despite their relatively high melt productivity, the wet solidus for volcaniclastic sediments is found to be higher (825-850 °C) than other marine sediments (700-750 °C) at 3 GPa. This trend is reversed at high-pressure conditions (6 GPa) where the biotite melting reaction occurs at lower temperatures (800-850 °C) than the phengite melting reaction (900-1000 °C). Trace element data was obtained from the 3 GPa run products, showing that partial melts are depleted in heavy rare earth elements (REE) and high field strength elements (HFSE), due to the presence of residual garnet and rutile, and are enriched in large ion lithophile elements (LILE), except for Sr and Ba. This is in contrast to previous experimental studies on pelagic sediments at sub-arc depths, where Sr and Ba are among the most enriched trace elements in glasses. This behavior can be partly attributed to the presence of residual apatite, which also host some light REE in our supra-solidus residues. Our new experimental results account for a wide range of trace element and U-series geochemical features of the sedimentary component of the Mariana arc magmas, including imparting a substantial Nb anomaly to melts from an anomaly-free protolith.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10**4 cells cm**-3. Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: