918 resultados para Information interfaces and presentation: Miscellaneous.
Resumo:
Hepatitis C virus (HCV) vaccine efficacy may crucially depend on immunogen length and coverage of viral sequence diversity. However, covering a considerable proportion of the circulating viral sequence variants would likely require long immunogens, which for the conserved portions of the viral genome, would contain unnecessarily redundant sequence information. In this study, we present the design and in vitro performance analysis of a novel "epitome" approach that compresses frequent immune targets of the cellular immune response against HCV into a shorter immunogen sequence. Compression of immunological information is achieved by partial overlapping shared sequence motifs between individual epitopes. At the same time, sequence diversity coverage is provided by taking advantage of emerging cross-reactivity patterns among epitope variants so that epitope variants associated with the broadest variant cross-recognition are preferentially included. The processing and presentation analysis of specific epitopes included in such a compressed, in vitro-expressed HCV epitome indicated effective processing of a majority of tested epitopes, although re-presentation of some epitopes may require refined sequence design. Together, the present study establishes the epitome approach as a potential powerful tool for vaccine immunogen design, especially suitable for the induction of cellular immune responses against highly variable pathogens.
Resumo:
Information management and geoinformation systems (GIS) have become indispensable in a large majority of protected areas all over the world. These tools are used for management purposes as well as for research and in recent years have become even more important for visitor information, education and communication. This study is divided into two parts: the first part provides a general overview of GIS and information management in a selected number of national park organizations. The second part lists and evaluates the needs of evolving large protected areas in Switzerland. The results show a wide use of GIS and information management tools in well established protected areas. The more isolated use of singular GIS tools has increasingly been replaced by an integrated geoinformation management. However, interview partners pointed out that human resources for GIS in most parks are limited. The interviews also highlight uneven access to national geodata. The view of integrated geoinformation management is not yet fully developed in the park projects in Switzerland. Short-term needs, such as software and data availability, motivate a large number of responses collected within an exhaustive questionnaire. Nevertheless, the need for coordinated action has been identified and should be followed up. The park organizations in North America show how an effective coordination and cooperation might be organized.
Resumo:
For smart cities applications, a key requirement is to disseminate data collected from both scalar and multimedia wireless sensor networks to thousands of end-users. Furthermore, the information must be delivered to non-specialist users in a simple, intuitive and transparent manner. In this context, we present Sensor4Cities, a user-friendly tool that enables data dissemination to large audiences, by using using social networks, or/and web pages. The user can request and receive monitored information by using social networks, e.g., Twitter and Facebook, due to their popularity, user-friendly interfaces and easy dissemination. Additionally, the user can collect or share information from smart cities services, by using web pages, which also include a mobile version for smartphones. Finally, the tool could be configured to periodically monitor the environmental conditions, specific behaviors or abnormal events, and notify users in an asynchronous manner. Sensor4Cities improves the data delivery for individuals or groups of users of smart cities applications and encourages the development of new user-friendly services.
Resumo:
Despite the astounding success of the fast fashion retailers, the management practices leading to these results have not been subject to extensive research so far. Given this background, we analyze the impact of information sharing and vertical integration on the performance of 51 German apparel companies. We find that the positive impact of vertical integration is mediated by information sharing, i.e. that the ability to improve the information flow is a key success factor of vertically integrated apparel supply chains. Thus, the success of an expansion strategy based on vertical integration critically depends on effective ways to share logistical information.
Resumo:
People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.
Resumo:
Digital technologies have profoundly changed not only the ways we create, distribute, access, use and re-use information but also many of the governance structures we had in place. Overall, "older" institutions at all governance levels have grappled and often failed to master the multi-faceted and multi-directional issues of the Internet. Regulatory entrepreneurs have yet to discover and fully mobilize the potential of digital technologies as an influential factor impacting upon the regulability of the environment and as a potential regulatory tool in themselves. At the same time, we have seen a deterioration of some public spaces and lower prioritization of public objectives, when strong private commercial interests are at play, such as most tellingly in the field of copyright. Less tangibly, private ordering has taken hold and captured through contracts spaces, previously regulated by public law. Code embedded in technology often replaces law. Non-state action has in general proliferated and put serious pressure upon conventional state-centered, command-and-control models. Under the conditions of this "messy" governance, the provision of key public goods, such as freedom of information, has been made difficult or is indeed jeopardized.The grand question is how can we navigate this complex multi-actor, multi-issue space and secure the attainment of fundamental public interest objectives. This is also the question that Ian Brown and Chris Marsden seek to answer with their book, Regulating Code, as recently published under the "Information Revolution and Global Politics" series of MIT Press. This book review critically assesses the bold effort by Brown and Marsden.
Resumo:
INTRODUCTION Late presentation to HIV care leads to increased morbidity and mortality. We explored risk factors and reasons for late HIV testing and presentation to care in the nationally representative Swiss HIV Cohort Study (SHCS). METHODS Adult patients enrolled in the SHCS between July 2009 and June 2012 were included. An initial CD4 count <350 cells/µl or an AIDS-defining illness defined late presentation. Demographic and behavioural characteristics of late presenters (LPs) were compared with those of non-late presenters (NLPs). Information on self-reported, individual barriers to HIV testing and care were obtained during face-to-face interviews. RESULTS Of 1366 patients included, 680 (49.8%) were LPs. Seventy-two percent of eligible patients took part in the survey. LPs were more likely to be female (p<0.001) or from sub-Saharan Africa (p<0.001) and less likely to be highly educated (p=0.002) or men who have sex with men (p<0.001). LPs were more likely to have their first HIV test following a doctor's suggestion (p=0.01), and NLPs in the context of a regular check-up (p=0.02) or after a specific risk situation (p<0.001). The main reasons for late HIV testing were "did not feel at risk" (72%), "did not feel ill" (65%) and "did not know the symptoms of HIV" (51%). Seventy-one percent of the participants were symptomatic during the year preceding HIV diagnosis and the majority consulted a physician for these symptoms. CONCLUSIONS In Switzerland, late presentation to care is driven by late HIV testing due to low risk perception and lack of awareness about HIV. Tailored HIV testing strategies and enhanced provider-initiated testing are urgently needed.
Resumo:
Cancer is the second leading cause of death in the United States. With the advent of new technologies, changes in health care delivery, and multiplicity of provider types that patients must see, cancer care management has become increasingly complex. The availability of cancer health information has been shown to help cancer patients cope with the management and effects of their cancers. As a result, more cancer patients are using the internet to find resources that can aid in decision-making and recovery. ^ The Health Information National Trends Survey (HINTS) is a nationally representative survey designed to collect information about the experiences of cancer and non-cancer adults with health information sources. The HINTS survey focused on both conventional sources as well as newer technologies, particularly the internet. This study is a descriptive analysis of the HINTS 2003 and HINTS 2005 survey data. The purpose of the research is to explore the general trends in health information seeking and use by US adults, and especially by cancer patients. ^ From 2003 to 2005, internet use for various health-related activities appears to have increased among adults with and without cancer. Differences were found between the groups in the general trust in information media, particularly the internet. Non-cancer respondents tended to have greater trust in information media than cancer respondents. ^ The latter portion of this work examined characteristics of HINTS respondents that were thought to be relevant to how much trust individuals placed in the internet as a source of health information. Trust in health information from the internet was significantly greater among younger adults, higher-earning households, internet users, online seekers of health or cancer information, and those who found online cancer information useful. ^
Resumo:
Innovative, aggressive treatments and prolonged survival rates for patients with childhood cancers have placed new demands on the patient, parent and physician. As a result, counterproductive coping behaviors are often noted in adolescent cancer patients.^ One of the main ways the environment is manipulated by the individual to achieve personal comfort is through selectivity of information. An individual will usually pull the support personally needed to cope from the environment if sufficient resources are available. However, information provided young cancer patients is often filtered through the physicians and parents perspectives of the patient's needs without systematic input from the patient. In order to ensure that adequate information resources are available to help teenage patients cope with their illness, health professionals must have insights into the information needs of those patients. No previous efforts to address this subject were found in the literature.^ This study was designed to identify adolescent perspectives of their disease-related information needs and to compare their viewpoints with those of their parents and physicians. Sixty-five outpatient cancer patients (ages 11-20) receiving treatment at the University of Texas M. D. Anderson Hospital and Tumor Institute in Houston, Texas, 60 of their parents, and 53 physicians, who were involved in the treatment of pediatric patients at M. D. Anderson, were asked to complete self-administered questionnaires. The questionnaires used were developed, administered and analyzed by the investigator. Specific areas addressed in the questionnaires included: Perceptions of cancer-related tests and treatments, the importance of 30 disease-related items of information, responses evoked by receipt of information, current and preferred sources of information, delivery of information at the time of diagnosis, and disease-related information requested for patients, family, friends and teachers.^ Adolescent perceptions of their information needs and their preferences for delivery of information were determined. The relationships between patient-parent and patient-physician perceptions were then analyzed to determine areas in which agreements and disparities in viewpoint existed. Programmatic and research recommendations were then provided.^ Hopefully, through these efforts, the adolescent patient will be helped to receive relevant information support from those deemed to be most important to his/her efforts to cope with cancer. ^
Resumo:
Runtime management of distributed information systems is a complex and costly activity. One of the main challenges that must be addressed is obtaining a complete and updated view of all the managed runtime resources. This article presents a monitoring architecture for heterogeneous and distributed information systems. It is composed of two elements: an information model and an agent infrastructure. The model negates the complexity and variability of these systems and enables the abstraction over non-relevant details. The infrastructure uses this information model to monitor and manage the modeled environment, performing and detecting changes in execution time. The agents infrastructure is further detailed and its components and the relationships between them are explained. Moreover, the proposal is validated through a set of agents that instrument the JEE Glassfish application server, paying special attention to support distributed configuration scenarios.
Resumo:
Cultural content on the Web is available in various domains (cultural objects, datasets, geospatial data, moving images, scholarly texts and visual resources), concerns various topics, is written in different languages, targeted to both laymen and experts, and provided by different communities (libraries, archives museums and information industry) and individuals (Figure 1). The integration of information technologies and cultural heritage content on the Web is expected to have an impact on everyday life from the point of view of institutions, communities and individuals. In particular, collaborative environment scan recreate 3D navigable worlds that can offer new insights into our cultural heritage (Chan 2007). However, the main barrier is to find and relate cultural heritage information by end-users of cultural contents, as well as by organisations and communities managing and producing them. In this paper, we explore several visualisation techniques for supporting cultural interfaces, where the role of metadata is essential for supporting the search and communication among end-users (Figure 2). A conceptual framework was developed to integrate the data, purpose, technology, impact, and form components of a collaborative environment, Our preliminary results show that collaborative environments can help with cultural heritage information sharing and communication tasks because of the way in which they provide a visual context to end-users. They can be regarded as distributed virtual reality systems that offer graphically realised, potentially infinite, digital information landscapes. Moreover, collaborative environments also provide a new way of interaction between an end-user and a cultural heritage data set. Finally, the visualisation of metadata of a dataset plays an important role in helping end-users in their search for heritage contents on the Web.
Resumo:
Aiming to address requirements concerning integration of services in the context of ?big data?, this paper presents an innovative approach that (i) ensures a flexible, adaptable and scalable information and computation infrastructure, and (ii) exploits the competences of stakeholders and information workers to meaningfully confront information management issues such as information characterization, classification and interpretation, thus incorporating the underlying collective intelligence. Our approach pays much attention to the issues of usability and ease-of-use, not requiring any particular programming expertise from the end users. We report on a series of technical issues concerning the desired flexibility of the proposed integration framework and we provide related recommendations to developers of such solutions. Evaluation results are also discussed.
Resumo:
The paper presents the main elements of a project entitled ICT-Emissions that aims at developing a novel methodology to evaluate the impact of ICT-related measures on mobility, vehicle energy consumption and CO2 emissions of vehicle fleets at the local scale, in order to promote the wider application of the most appropriate ICT measures. The proposed methodology combines traffic and emission modelling at micro and macro scales. These will be linked with interfaces and submodules which will be specifically designed and developed. A number of sources are available to the consortium to obtain the necessary input data. Also, experimental campaigns are offered to fill in gaps of information in traffic and emission patterns. The application of the methodology will be demonstrated using commercially available software. However, the methodology is developed in such a way as to enable its implementation by a variety of emission and traffic models. Particular emphasis is given to (a) the correct estimation of driver behaviour, as a result of traffic-related ICT measures, (b) the coverage of a large number of current vehicle technologies, including ICT systems, and (c) near future technologies such as hybrid, plug-in hybrids, and electric vehicles. The innovative combination of traffic, driver, and emission models produces a versatile toolbox that can simulate the impact on energy and CO2 of infrastructure measures (traffic management, dynamic traffic signs, etc.), driver assistance systems and ecosolutions (speed/cruise control, start/stop systems, etc.) or a combination of measures (cooperative systems).The methodology is validated by application in the Turin area and its capacity is further demonstrated by application in real world conditions in Madrid and Rome.
Resumo:
In order to establish an active internal know-how -reserve~ in an information processing and engineering services . company, a training architecture tailored to the company as an whole must be defined. When a company' s earnings come from . advisory services dynamically structured i.n the form of projects, as is the case at hand, difficulties arise that must be taken into account in the architectural design. The first difficulties are of a psychological nature and the design method proposed here begjns wi th the definition of the highest training metasystem, which is aimed at making adjustments for the variety of perceptions of the company's human components, before the architecture can be designed. This approach may be considered as an application of the cybernetic Law of Requisita Variety (Ashby) and of the Principle of Conceptual Integrity (Brooks) . Also included is a description of sorne of the results of the first steps of metasystems at the level of company organization.
Resumo:
En la interacción con el entorno que nos rodea durante nuestra vida diaria (utilizar un cepillo de dientes, abrir puertas, utilizar el teléfono móvil, etc.) y en situaciones profesionales (intervenciones médicas, procesos de producción, etc.), típicamente realizamos manipulaciones avanzadas que incluyen la utilización de los dedos de ambas manos. De esta forma el desarrollo de métodos de interacción háptica multi-dedo dan lugar a interfaces hombre-máquina más naturales y realistas. No obstante, la mayoría de interfaces hápticas disponibles en el mercado están basadas en interacciones con un solo punto de contacto; esto puede ser suficiente para la exploración o palpación del entorno pero no permite la realización de tareas más avanzadas como agarres. En esta tesis, se investiga el diseño mecánico, control y aplicaciones de dispositivos hápticos modulares con capacidad de reflexión de fuerzas en los dedos índice, corazón y pulgar del usuario. El diseño mecánico de la interfaz diseñada, ha sido optimizado con funciones multi-objetivo para conseguir una baja inercia, un amplio espacio de trabajo, alta manipulabilidad y reflexión de fuerzas superiores a 3 N en el espacio de trabajo. El ancho de banda y la rigidez del dispositivo se han evaluado mediante simulación y experimentación real. Una de las áreas más importantes en el diseño de estos dispositivos es el efector final, ya que es la parte que está en contacto con el usuario. Durante este trabajo se ha diseñado un dedal de bajo peso, adaptable a diferentes usuarios que, mediante la incorporación de sensores de contacto, permite estimar fuerzas normales y tangenciales durante la interacción con entornos reales y virtuales. Para el diseño de la arquitectura de control, se estudiaron los principales requisitos para estos dispositivos. Entre estos, cabe destacar la adquisición, procesado e intercambio a través de internet de numerosas señales de control e instrumentación; la computación de equaciones matemáticas incluyendo la cinemática directa e inversa, jacobiana, algoritmos de detección de agarres, etc. Todos estos componentes deben calcularse en tiempo real garantizando una frecuencia mínima de 1 KHz. Además, se describen sistemas para manipulación de precisión virtual y remota; así como el diseño de un método denominado "desacoplo cinemático iterativo" para computar la cinemática inversa de robots y la comparación con otros métodos actuales. Para entender la importancia de la interacción multimodal, se ha llevado a cabo un estudio para comprobar qué estímulos sensoriales se correlacionan con tiempos de respuesta más rápidos y de mayor precisión. Estos experimentos se desarrollaron en colaboración con neurocientíficos del instituto Technion Israel Institute of Technology. Comparando los tiempos de respuesta en la interacción unimodal (auditiva, visual y háptica) con combinaciones bimodales y trimodales de los mismos, se demuestra que el movimiento sincronizado de los dedos para generar respuestas de agarre se basa principalmente en la percepción háptica. La ventaja en el tiempo de procesamiento de los estímulos hápticos, sugiere que los entornos virtuales que incluyen esta componente sensorial generan mejores contingencias motoras y mejoran la credibilidad de los eventos. Se concluye que, los sistemas que incluyen percepción háptica dotan a los usuarios de más tiempo en las etapas cognitivas para rellenar información de forma creativa y formar una experiencia más rica. Una aplicación interesante de los dispositivos hápticos es el diseño de nuevos simuladores que permitan entrenar habilidades manuales en el sector médico. En colaboración con fisioterapeutas de Griffith University en Australia, se desarrolló un simulador que permite realizar ejercicios de rehabilitación de la mano. Las propiedades de rigidez no lineales de la articulación metacarpofalange del dedo índice se estimaron mediante la utilización del efector final diseñado. Estos parámetros, se han implementado en un escenario que simula el comportamiento de la mano humana y que permite la interacción háptica a través de esta interfaz. Las aplicaciones potenciales de este simulador están relacionadas con entrenamiento y educación de estudiantes de fisioterapia. En esta tesis, se han desarrollado nuevos métodos que permiten el control simultáneo de robots y manos robóticas en la interacción con entornos reales. El espacio de trabajo alcanzable por el dispositivo háptico, se extiende mediante el cambio de modo de control automático entre posición y velocidad. Además, estos métodos permiten reconocer el gesto del usuario durante las primeras etapas de aproximación al objeto para su agarre. Mediante experimentos de manipulación avanzada de objetos con un manipulador y diferentes manos robóticas, se muestra que el tiempo en realizar una tarea se reduce y que el sistema permite la realización de la tarea con precisión. Este trabajo, es el resultado de una colaboración con investigadores de Harvard BioRobotics Laboratory. ABSTRACT When we interact with the environment in our daily life (using a toothbrush, opening doors, using cell-phones, etc.), or in professional situations (medical interventions, manufacturing processes, etc.) we typically perform dexterous manipulations that involve multiple fingers and palm for both hands. Therefore, multi-Finger haptic methods can provide a realistic and natural human-machine interface to enhance immersion when interacting with simulated or remote environments. Most commercial devices allow haptic interaction with only one contact point, which may be sufficient for some exploration or palpation tasks but are not enough to perform advanced object manipulations such as grasping. In this thesis, I investigate the mechanical design, control and applications of a modular haptic device that can provide force feedback to the index, thumb and middle fingers of the user. The designed mechanical device is optimized with a multi-objective design function to achieve a low inertia, a large workspace, manipulability, and force-feedback of up to 3 N within the workspace; the bandwidth and rigidity for the device is assessed through simulation and real experimentation. One of the most important areas when designing haptic devices is the end-effector, since it is in contact with the user. In this thesis the design and evaluation of a thimble-like, lightweight, user-adaptable, and cost-effective device that incorporates four contact force sensors is described. This design allows estimation of the forces applied by a user during manipulation of virtual and real objects. The design of a real-time, modular control architecture for multi-finger haptic interaction is described. Requirements for control of multi-finger haptic devices are explored. Moreover, a large number of signals have to be acquired, processed, sent over the network and mathematical computations such as device direct and inverse kinematics, jacobian, grasp detection algorithms, etc. have to be calculated in Real Time to assure the required high fidelity for the haptic interaction. The Hardware control architecture has different modules and consists of an FPGA for the low-level controller and a RT controller for managing all the complex calculations (jacobian, kinematics, etc.); this provides a compact and scalable solution for the required high computation capabilities assuring a correct frequency rate for the control loop of 1 kHz. A set-up for dexterous virtual and real manipulation is described. Moreover, a new algorithm named the iterative kinematic decoupling method was implemented to solve the inverse kinematics of a robotic manipulator. In order to understand the importance of multi-modal interaction including haptics, a subject study was carried out to look for sensory stimuli that correlate with fast response time and enhanced accuracy. This experiment was carried out in collaboration with neuro-scientists from Technion Israel Institute of Technology. By comparing the grasping response times in unimodal (auditory, visual, and haptic) events with the response times in events with bimodal and trimodal combinations. It is concluded that in grasping tasks the synchronized motion of the fingers to generate the grasping response relies on haptic cues. This processing-speed advantage of haptic cues suggests that multimodalhaptic virtual environments are superior in generating motor contingencies, enhancing the plausibility of events. Applications that include haptics provide users with more time at the cognitive stages to fill in missing information creatively and form a richer experience. A major application of haptic devices is the design of new simulators to train manual skills for the medical sector. In collaboration with physical therapists from Griffith University in Australia, we developed a simulator to allow hand rehabilitation manipulations. First, the non-linear stiffness properties of the metacarpophalangeal joint of the index finger were estimated by using the designed end-effector; these parameters are implemented in a scenario that simulates the behavior of the human hand and that allows haptic interaction through the designed haptic device. The potential application of this work is related to educational and medical training purposes. In this thesis, new methods to simultaneously control the position and orientation of a robotic manipulator and the grasp of a robotic hand when interacting with large real environments are studied. The reachable workspace is extended by automatically switching between rate and position control modes. Moreover, the human hand gesture is recognized by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of the approximation-to-the-object phase and then mapped to the robotic hand actuators. These methods are validated to perform dexterous manipulation of objects with a robotic manipulator, and different robotic hands. This work is the result of a research collaboration with researchers from the Harvard BioRobotics Laboratory. The developed experiments show that the overall task time is reduced and that the developed methods allow for full dexterity and correct completion of dexterous manipulations.