951 resultados para Including therapeutic trials
Resumo:
Objective-Clinical trials of statins during myocardial infarction (MI) have differed in their therapeutic regimes and generated conflicting results. This study evaluated the role of the timing and potency of statin therapy on its potential mechanisms of benefit during MI. Methods and Results-ST-elevation MI patients (n = 125) were allocated into 5 groups: no statin; 20, 40, or 80 mg/day simvastatin starting at admission; or 80 mg/day simvastatin 48 hours after admission. After 7 days, all patients switched their treatment to 20 mg/day simvastatin for an additional 3 weeks and then underwent flow-mediated dilation in the brachial artery. As of the second day, C-reactive protein (CRP) differed between non-statin users (12.0 +/- 4.1 mg/L) and patients treated with 20 (8.5 +/- 4.0 mg/L), 40 (3.8 +/- 2.5 mg/L), and 80 mg/day (1.4 +/- 1.5 mg/L), and the daily differences remained significant until the seventh day (P < 0.0001). The higher the statin dose, the lower the elevation of interleukin-2 and tumor necrosis factor-alpha, the greater the reduction of 8-isoprostane and low-density lipoprotein(-), and the greater the increase in nitrate/nitrite levels during the first 5 days (P < 0.001). Later initiation of statin was less effective than its early introduction in relation to attenuation of CRP, interleukin-2, tumor necrosis factor-alpha, 8-isoprostane, and low-density lipoprotein(-), as well as in increase in nitrate/nitrite levels (P < 0.0001). At the 30th day, there was no longer a difference in lipid profile or CRP between groups; the flow-mediated dilation, however, was proportional to the initial statin dose and was higher for those who started the treatment early (P = 0.001). Conclusion-This study demonstrates that the timing and potency of statin treatment during MI are key elements for their main mechanisms of benefit.
Resumo:
The Brazilian generic drugs policy was implemented in 1999 with the aim of stimulating competition in the market, improve the quality of drugs and improve the access of the population to drug treatment. The process of implementing this policy allowed the introduction and discussion of concepts that had never before been used in the context of drug registration in Brazil: bioavailability, bioequivalence, pharmaceutical equivalence, generic drugs, biopharmaceutical classification system, biowaiver. The present article provides definitions for these concepts in the context of Brazilian legislation as well as a historical and chronological description of the implementation of the generic drugs policy in Brazil, including a list of current generic drug legislation. This article contributes to the understanding of the Brazilian generic drugs policy and facilitates the search for information concerning the legal requirements for registration of drugs in Brazil.
Resumo:
Many therapeutic agents are commercialized under their racemic form. The enantiomers can show differences in the pharmacokinetic and pharmacodynamic profile. The use of a pure enantiomer in pharmaceutical formulations may result in a better therapeutic index and fewer adverse effects. Atropine, an alkaloid of Atropa belladonna, is a racemic mixture of l-hyoscyamine and d-hyoscyamine. It is widely used to dilate the pupil. To quantify these enantiomers in ophthalmic solutions, an HPLC method was developed and validated using a Chiral AGP (R) column at 20 degrees C. The mobile phase consisted of a buffered phosphate solution (containing 10 mM 1-octanesulfonic acid sodium salt and 7.5 mM triethylamine, adjusted to pH 7.0 with orthophosphoric acid) and acetonitrile (99 + 1, v/v). The flow rate was 0.6 mL/min, with UV detection at 205 nm. In the concentration range of 14.0-26.0 mu g/mL, the method was found to be linear (r > 0.9999), accurate (with recovery of 100.1-100.5%), and precise (RSD system: <= 0.6%; RSD intraday: <= 1.1%; RSD interday: <= 0.9%). The method was specific, and the standard and sample solutions were stable for up to 72 h. The factorial design assures robustness with a variation of +/-10% in the mobile phase components and 2 degrees C of column temperature. The complete validation, including stress testing and factorial design, was studied and is presented in this research.
Resumo:
A simple, rapid, selective and sensitive analytical method by HPLC with UV detection was developed for the quantification of carbamazepine, phenobarbital and phenytoin in only 0.2 mL of plasma. A C18 column (150 x 3.9 mm, 4 micra) using a binary mobile phase consisting of water and acetonitrile (70:30, v/v) at a flow rate of 0.5 mL/min were proposed. Validation of the analytical method showed a good linearity (0.3 to 20.0 mg/L for CBZ, 0.9 to 60.0 mg/L for PB and 0.6 to 40.0 mg/L for PHT), high sensitivity (LOQ: 0.3, 0.9 and 0.6 mg/L respectively). The method was applied for drug monitoring of antiepileptic drugs (AED) in 27 patients with epilepsy under polytherapy.
Resumo:
Nisin is a natural additive for conservation of food, and can also be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Grain-negative bacteria. In this paper we present a potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity. Aqueous two-phase micellar systems (ATPMS) are considered promising for bioseparation and purification purposes. Triton X-114 was chosen as the as phase-forming surfactant because it is relatively mild to proteins and it also forms two coexisting phases within a convenient temperature range. Nisin activity was determined by the agar diffusion assay utilizing Lactobacillus sake as a sensitive indicator microorganism. Results indicated that nisin partitions preferentially to the micelle rich-phase, despite the surfactant concentration tested, and its antimicrobial activity increases. The successful implementation of this peptide partitioning, from a suspension containing other compounds, represents an important step towards developing a separation method for nisin, and more generally, for other biomolecules of interest. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Resumo:
The prominent nitric oxide (NO) donor [Ru(terpy)(bdqi)NO](PF(6))(3) has been synthesized and evaluated with respect to noteworthy biological effects due to its NO photorelease, including vascular relaxation and melanoma cell culture toxicity. The potential for delivering NO in therapeutic quantities is tenable since the nitrosyl ruthenium complex (NRC) must first reach the ""target tissue"" and then release the NO upon stimulus. In this context. NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment. NRC-loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers were prepared via the microemulsification method, with average diameters of 275 +/- 15 nm and 211 +/- 31 nm and zeta potentials of -40.7 +/- 10.4 mV and -50.0 +/- 7.5 mV, respectively. In vitro kinetic studies of NRC release from nanoparticles showed sustained release of NRC from the lipid carriers and illustrated the influence of the release medium and the lyophilization process. Stability studies showed that NO is released from NRC as a function of temperature and time and due to skin contact. The encapsulation of NRC in SLN followed by its lyophilization, significantly improved the complex stability. Furthermore, of particular interest was the fact that in the NO photorelease study, the NO release from the NRC-loaded SLN was approximately twice that of just NRC in solution. NRC-loaded SLN performs well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: Benznidazole (Bz) is the therapy currently available for clinical treatment of Chagas` disease. However, many strains of Trypanosoma cruzi parasites are naturally resistant. Nitric oxide (NO) produced by activated macrophages is crucial to the intracellular killing of parasites. Here, we investigate the in vitro and in vivo activities against T. cruzi, of the NO donor, trans-[RuCl([15]aneN(4))NO]2+. Experimental approach: Trans-[RuCl([15]aneN(4))NO]2+ was incubated with a partially drug-resistant T. cruzi Y strain and the anti-proliferative (epimastigote form) and trypanocidal activities (trypomastigote and amastigote) evaluated. Mice were treated during the acute phase of Chagas` disease. The anti-T. cruzi activity was evaluated by parasitaemia, survival rate, cardiac parasitism, myocarditis and the curative rate. Key results: Trans-[RuCl([15]aneN(4))NO]2+ was 10- and 100-fold more active than Bz against amastigotes and trypomastigotes respectively. Further, trans-[RuCl([15]aneN(4))NO]2+ (0.1 mM) induced 100% of trypanocidal activity (trypomastigotes forms) in vitro. Trans-[RuCl([15]aneN(4))NO]2+ induced permanent suppression of parasitaemia and 100% survival in a murine model of acute Chagas` disease. When the drugs were given alone, parasitological cures were confirmed in only 30 and 40% of the animals treated with the NO donor (3.33 mu mol center dot kg-1 center dot day-1) and Bz (385 mu mol center dot kg-1 center dot day-1), respectively, but when given together, 80% of the animals were parasitologically cured. The cured animals showed an absence of myocarditis and a normalisation of cytokine production in the sera. In addition, no in vitro toxicity was observed at the tested doses. Conclusions and implications: These findings indicate that trans-[RuCl([15]aneN(4))NO]2+ is a promising lead compound for the treatment of human Chagas` disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Silva et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00524.x.
Resumo:
Objectives In the present study we investigated the anti nociceptive, anti-inflammatory and antipyretic effects of 7-hydroxycoumarin (7-HC) in animal models. Methods The effects of oral 7-HC were tested against acetic acid-induced writhing, formalin test, tail flick test, complete Freund`s adjuvant (CFA)-induced hypemociception, carrageenan-induced paw oedema, lipopolysaccharide-induced fever and the rota rod test. Key findings 7-HC (3-60 mg/kg) produced a dose-related antinociception against acetic acid-induced writhing in mice and in the formalin test. In contrast, treatment with 7-HC did not prevent thermal nociception in the tail flick test. A single treatment with 7-HC, 60 mg/kg, produced a long-lasting antinociceptive effect against CFA-induced hypernociception, a chronic inflammatory pain stimulus. Notably, at 60 mg/kg per day over 4 days the administration of 7-HC produced a continuous antinociceptive effect against CFA-induced hypernociception. 7-HC (30-120 mg/kg) produced anti-inflammatory and antipyretic effects against carrageenan-induced inflammation and lipopolysaccharide-induced fever, respectively. Moreover, 7-HC was found to be safe with respect to ulcer induction. In the rota rod test, 7-HC-treated mice did not show any motor performance alterations. Conclusions The prolonged antinociceptive and anti-inflammatory effects of 7-HC, in association with its low ulcerogenic activity, indicate that this molecule might be a good candidate for development of new drugs for the control of chronic inflammatory pain and fever.
Resumo:
The intra-buccal polymeric bioadhesive systems that can stay adhered to the oral soft tissues for drug programmed release, with the preventive and/or therapeutic purpose has been employed for large clinical situations. A system based on hydroxypropyl methyl cellulose/Carbopol 934`/magnesium stearate (HPMC/Cp/StMg) was developed having the sodium fluoride as active principle. This kind of system was evaluated according to its resistance to the removal by means of physical test of tensile strength. Swine buccal mucosa extracted immediately after animals` sacrifice was employed as substrate for the physical trials, to obtain 16 test bodies. Artificial saliva with or without mucin was used to involve the substrate/bioadhesive system sets during the trials. Artificial salivas viscosity was determined by means of Brookfield viscometer, showing the artificial saliva with mucin 10.0 cP, and the artificial saliva without mucin 7.5 cP. The tensile strength assays showed the following averages: for the group ""artificial saliva with mucin"" - 12.89 Pa, and for the group ""without mucin"" - 12.35 Pa. Statistical analysis showed no significant difference between the assays for both artificial salivas, and it was possible to conclude that the variable mucin did not interfered with the bioadhesion process for the polymeric devices. The device was able to release fluoride in a safe, efficient and constant way up to 8 hours.