902 resultados para Incidental parameter bias


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton's method and can be applied to a wider variety of problems. It also converges when the objective function is non-differentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorithm with high quality. In this study a series of step size parameters in the subgradient equation is studied. The performance is compared for a general piecewise function and a specific p-median problem. We examine how the quality of solution changes by setting five forms of step size parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider method of moment fixed effects (FE) estimation of technical inefficiency. When N, the number of cross sectional observations, is large it ispossible to obtain consistent central moments of the population distribution of the inefficiencies. It is well-known that the traditional FE estimator may be seriously upward biased when N is large and T, the number of time observations, is small. Based on the second central moment and a single parameter distributional assumption on the inefficiencies, we obtain unbiased technical inefficiencies in large N settings. The proposed methodology bridges traditional FE and maximum likelihood estimation – bias is reduced without the random effects assumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider methods for estimating causal effects of treatment in the situation where the individuals in the treatment and the control group are self selected, i.e., the selection mechanism is not randomized. In this case, simple comparison of treated and control outcomes will not generally yield valid estimates of casual effects. The propensity score method is frequently used for the evaluation of treatment effect. However, this method is based onsome strong assumptions, which are not directly testable. In this paper, we present an alternative modeling approachto draw causal inference by using share random-effect model and the computational algorithm to draw likelihood based inference with such a model. With small numerical studies and a real data analysis, we show that our approach gives not only more efficient estimates but it is also less sensitive to model misspecifications, which we consider, than the existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho analisamos alguns processos com longa dependência sazonais, denotados por SARFIMA(0,D, 0)s, onde s é a sazonalidade. Os estudos de estimação e previsão estão baseados em simulações de Monte Carlo para diferentes tamanhos amostrais e diferentes sazonalidades. Para estimar o parâmetro D de diferenciação sazonal utilizamos os estimadores propostos por Geweke e Porter-Hudak (1983), Reisen (1994) e Fox e Taqqu (1986). Para os dois primeiros procedimentos de estimação consideramos seis diferentes maneiras de compor o número de regressores necessários na análise de regressão, com o intuito de melhor comparar seus desempenhos. Apresentamos um estudo sobre previsão h-passos à frente utilizando os processos SARFIMA(0,D, 0)s no qual analisamos o erro de previsão, as variâncias teórica e amostral, o vício, o pervício e o erro quadrático médio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using data from the United States, Japan, Germany , United Kingdom and France, Sims (1992) found that positive innovations to shortterm interest rates led to sharp, persistent increases in the price level. The result was conÖrmed by other authors and, as a consequence of its non-expectable nature, was given the name "price puzzle" by Eichenbaum (1992). In this paper I investigate the existence of a price puzzle in Brazil using the same type of estimation and benchmark identiÖcation scheme employed by Christiano et al. (2000). In a methodological improvement over these studies, I qualify the results with the construction of bias-corrected bootstrap conÖdence intervals. Even though the data does show the existence of a statistically signiÖcant price puzzle in Brazil, it lasts for only one quarter and is quantitatively immaterial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explains why the existence of state owned financial institutions makes it more difficult for a country to balance its budget. We show that states can use their financiaI institutions to transfer their deficits to the federal govemment. As a result, there is a bias towards Iarge deficits and high inflation rates. Our model also predicts that state owned financiaI institutions should underperform the market, mainly because they concentrate their portfolios on non-performing loans to their own shareholders, that is, the states. Brazil and Argentina are two countries with a history of high inflation that confirm our predictions .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this paper is to show the possibility of a non-monotone relation between coverage ans risk which has been considered in the literature of insurance models since the work of Rothschild and Stiglitz (1976). We present an insurance model where the insured agents have heterogeneity in risk aversion and in lenience (a prevention cost parameter). Risk aversion is described by a continuous parameter which is correlated with lenience and for the sake of simplicity, we assume perfect correlation. In the case of positive correlation, the more risk averse agent has higher cosr of prevention leading to a higher demand for coverage. Equivalently, the single crossing property (SCP) is valid and iplies a positive correlation between overage and risk in equilibrium. On the other hand, if the correlation between risk aversion and lenience is negative, not only may the SCP be broken, but also the monotonocity of contracts, i.e., the prediction that high (low) risk averse types choose full (partial) insurance. In both cases riskiness is monotonic in risk aversion, but in the last case there are some coverage levels associated with two different risks (low and high), which implies that the ex-ante (with respect to the risk aversion distribution) correlation between coverage and riskiness may have every sign (even though the ex-post correlation is always positive). Moreover, using another instrument (a proxy for riskiness), we give a testable implication to desentangle single crossing ans non single croosing under an ex-post zero correlation result: the monotonicity of coverage as a function os riskiness. Since by controlling for risk aversion (no asymmetric information), coverage is monotone function of riskiness, this also fives a test for asymmetric information. Finally, we relate this theoretical results to empirical tests in the recent literature, specially the Dionne, Gouruéroux and Vanasse (2001) work. In particular, they found an empirical evidence that seems to be compatible with asymmetric information and non single crossing in our framework. More generally, we build a hidden information model showing how omitted variables (asymmetric information) can bias the sign of the correlation of equilibrium variables conditioning on all observable variables. We show that this may be the case when the omitted variables have a non-monotonic relation with the observable ones. Moreover, because this non-dimensional does not capture this deature. Hence, our main results is to point out the importance of the SPC in testing predictions of the hidden information models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise, based upon data from a well known survey is also presented. Overall, these results show promise for the feasible bias-corrected average forecast.