938 resultados para INDUCED PHASE-TRANSITIONS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different nanocomposites have been attained by in situ polymerization based on ultra-high molecular weight polyethylene (UHMWPE) and mesoporous SBA-15, this silica being used for immobilization of the FI catalyst bis [N-(3-tert-butylsalicylidene)-2,3,4,5,6-pentafluoroanilinato] titanium (IV) dichloride and as filler as well. Two distinct approaches have been selected for supporting the FI catalyst on the SBA-15 prior polymerization. A study on polymerization activity of this catalyst has been performed under homogenous conditions and upon heterogenization. A study of the effect of presence of mesoporous particles and of the immobilization method is also carried out. Moreover, the thermal characterization, phase transitions and mechanical response of some pristine UHMWPEs and UHMWPE/SBA-15 materials have been carried out. Relationships with variations on molar mass, impregnation method of catalyst and final SBA-15 content have been established.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work considers the crystallisation mechanisms of the most common and aggressive salts that generate stress in porous building stones as a result of changing ambient conditions. These mechanisms include the salt crystallisation that result from decreasing relative humidity and changes in temperature and, in hydrated salts, the dissolution of the lower hydrated form and the subsequent precipitation of the hydrated salt. We propose a new methodology for thermodynamic calculations using PHREEQC that includes these crystallisation mechanisms. This approach permits the calculation of the equilibrium relative humidity and the parameterization of the critical relative humidity and crystallisation pressures for the dissolution–precipitation transitions. The influence of other salts on the effectives of salt crystallisation and chemical weathering is also assessed. We review the sodium and magnesium sulphate and sodium chloride systems, in both single and multicomponent solutions, and they are compared to the sodium carbonate and calcium carbonate systems. The variation of crystallisation pressure, the formation of new minerals and the chemical dissolution by the presence of other salts is also evaluated. Results for hydrated salt systems show that high crystallisation pressures are possible as lower hydrated salts dissolve and more hydrated salts precipitate. High stresses may be also produced by decreasing temperature, although it requires that porous materials are wet for long periods of time. The presence of other salts changes the temperature and relative humidity of salt transitions that generates stress rather than reducing the pressure of crystallisation, if any salt has previously precipitated. Several practical conclusions derive from proposed methodology and provide conservators and architects with information on the potential weathering activity of soluble salts. Furthermore, the model calculations might be coupled with projections of future climate to give as improved understanding of the likely changes in the frequency of phase transitions in salts within porous stone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G˜.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Such particles, possibly a relic of phase transitions in the early Universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air-shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultrarelativistic magnetic monopoles range from 10(-1)9 (cm(2) sr s)(-1) for a Lorentz factor gamma = 10(9) to 2.5 x 10(-21) (cm(2) sr s)(-1) for gamma = 10(12). These results-the first obtained with a UHECR detector-improve previously published limits by up to an order of magnitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the spectroscopic phenomena in organic solids, in combination with other techniques, is an effective tool for the understanding of the structural properties of materials based on these compounds. This Ph.D. work was dedicated to the spectroscopic investigation of some relevant processes occurring in organic molecular crystals, with the goal of expanding the knowledge on the relationship between structure, dynamics and photoreactivity of these systems. Vibrational spectroscopy has been the technique of choice, always in combination with X-ray diffraction structural studies and often the support of computational methods. The vibrational study of the molecular solid state reaches its full potential when it includes the low-wavenumber region of the lattice-phonon modes, which probe the weak intermolecular interactions and are the fingerprints of the lattice itself. Microscopy is an invaluable addition in the investigation of processes that take place in the micro-meter scale of the crystal micro-domains. In chemical and phase transitions, as well as in polymorph screening and identification, the combination of Raman microscopy and lattice-phonon detection has provided useful information. Research on the fascinating class of single-crystal-to-single-crystal photoreactions, has shown how the homogeneous mechanism of these transformations can be identified by lattice-phonon microscopy, in agreement with the continuous evolution of their XRD patterns. On describing the behavior of the photodimerization mechanism of vitamin K3, the focus was instead on the influence of its polymorphism in governing the product isomerism. Polymorphism is the additional degree of freedom of molecular functional materials, and by advancing in its control and properties, functionalities can be promoted for useful applications. Its investigation focused on thin-film phases, widely employed in organic electronics. The ambiguities in phase identification often emerging by other experimental methods were successfully solved by vibrational measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum clock models are statistical mechanical spin models which may be regarded as a sort of bridge between the one-dimensional quantum Ising model and the one-dimensional quantum XY model. This thesis aims to provide an exhaustive review of these models using both analytical and numerical techniques. We present some important duality transformations which allow us to recast clock models into different forms, involving for example parafermions and lattice gauge theories. Thus, the notion of topological order enters into the game opening new scenarios for possible applications, like topological quantum computing. The second part of this thesis is devoted to the numerical analysis of clock models. We explore their phase diagram under different setups, with and without chirality, starting with a transverse field and then adding a longitudinal field as well. The most important observables we take into account for diagnosing criticality are the energy gap, the magnetisation, the entanglement entropy and the correlation functions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker spacetime in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a nonlocal term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near a zero scale factor (initial singularity), it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from ``nothing'' into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known that resonance can be induced by external noise or diversity. Here we show that resonance can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity. We also uncover that the presence of phase disorder can induce a double resonance phenomenon: phase disorder and coupling strength both can enhance neuronal firing activity. A physical theory is formulated to help understand the mechanism behind this double resonance phenomenon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NiCl(2)-4SC(NH(2))(2) (known as DTN) is a spin-1 material with a strong single-ion anisotropy that is regarded as a new candidate for Bose-Einstein condensation (BEC) of spin degrees of freedom. We present a systematic study of the low-energy excitation spectrum of DTN in the field-induced magnetically ordered phase by means of high-field electron spin resonance measurements at temperatures down to 0.45 K. We argue that two gapped modes observed in the experiment can be consistently interpreted within a four-sublattice antiferromagnet model with a finite interaction between two tetragonal subsystems and unbroken axial symmetry. The latter is crucial for the interpretation of the field-induced ordering in DTN in terms of BEC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The salt-induced precipitation of lysozyme from aqueous solutions was studied through precipitation assays in which the equilibrium compositions of the coexisting phases were determined. Lysozyme precipitation experiments were carried out at 5, 15 and 25 degrees C and pH 7.0 with ammonium sulfate, sodium sulfate and sodium chloride as precipitating agents. In these experiments a complete separation of the coexisting phases (liquid and solid) could not be achieved. Nevertheless it was possible to determine the composition of the precipitate. The enzymatic activity of lysozyme in the supernatant phase as well as in the precipitate phase was also determined. The activity balance suggests that there is a relationship between the composition of the true precipitate and the total activity recovery. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The salt-induced precipitation of lysozyme from aqueous solutions was studied at 25 degrees C and various pH values by cloud-point investigations, precipitation experiments (analysing the compositions of the coexisting phases) and microscopic investigations of the precipitates. Sodium sulphate as well as ammonium sulphate were used to induce the precipitation. The experimental results are discussed and used to develop a scheme of the phase equilibrium in water-rich aqueous solutions of lysozyme and either Na2SO4 or (NH4)(2)SO4. (C) 2007 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthetic organic compound λ(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe3+ magnetic ions in these phase transition. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe3+ ions are replaced by non-magnetic Ga3+ ions. We show how Hc can be extracted from the observed splitting of the Shybnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials. We also show that at high fields the spin fluctuations of the localized spins are not important.