897 resultados para INCLUSIVE SPECTRA
Resumo:
We present a study of the stellar parameters and iron abundances of 18 giant stars in six open clusters. The analysis was based on high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT-UT2). The results complement our previous study where 13 clusters were already analyzed. The total sample of 18 clusters is part of a program to search for planets around giant stars. The results show that the 18 clusters cover a metallicity range between -0.23 and +0.23 dex. Together with the derivation of the stellar masses, these metallicities will allow the metallicity and mass effects to be disentangled when analyzing the frequency of planets as a function of these stellar parameters.
Resumo:
Neutral-pion pi(0) spectra were measured at midrapidity (vertical bar y vertical bar < 0.35) in Au + Au collisions at root s(NN) = 39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1 < p(T) < 10 GeV/c. The high-p(T) tail is well described by a power law in all cases, and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding spectra for p + p collisions. The nuclear modification factors (RAA) show significant suppression, with a distinct energy, centrality, and p(T) dependence. Above p(T) = 7 GeV/c, R-AA is similar for root sNN = 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R-AA well at 200 GeV fail to describe the 39 GeV data, raising the possibility that, for the same p(T) region, the relative importance of initial-state effects and soft processes increases at lower energies. The p(T) range where pi(0) spectra in central Au + Au collisions have the same power as in p + p collisions is approximate to 5 and 7 GeV/c for root sNN = 200 and 62.4 GeV, respectively. For the root sNN = 39 GeV data, it is not clear whether such a region is reached, and the x(T) dependence of the x(T)-scaling power-law exponent is very different from that observed in the root sNN = 62 and 200 GeV data, providing further evidence that initial-state effects and soft processes mask the in-medium suppression of hardscattered partons to higher p(T) as the collision energy decreases.
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
We report integral cross sections for elastic electron scattering by the lignin subunits phenol, guaiacol, and p-coumaryl alcohol. Our calculations employed the Schwinger multichannel method with pseudopotentials and indicate three to four pi* shape resonances for each of these systems, suggesting that low-energy electrons could efficiently transfer energy into the lignin matrix. We also discuss dissociation mechanisms based on the calculated cross sections, available experimental data, virtual orbital analysis, and the knowledge on electron interactions with biomolecules. Our results point out a physical-chemical basis for electron-driven biomass delignification. The latter would be an essential step for efficient biofuel production from lignocellulosic materials.
Resumo:
A systematic study is presented for centrality, transverse momentum (p(T)), and pseudorapidity (eta) dependence of the inclusive charged hadron elliptic flow (v(2)) at midrapidity (vertical bar eta vertical bar < 1.0) in Au + Au collisions at root s(NN) = 7.7, 11.5, 19.6, 27, and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and four-particle cumulants (v(2){4}), are presented to investigate nonflow correlations and v(2) fluctuations. We observe that the difference between v(2){2} and v(2){4} is smaller at the lower collision energies. Values of v(2), scaled by the initial coordinate space eccentricity, v(2)/epsilon, as a function of p(T) are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (root s(NN) = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at root s(NN) = 2.76 TeV). The v(2)(pT) values for fixed pT rise with increasing collision energy within the pT range studied (<2 GeV/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v(2)(pT). We also compare the v(2) results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at beam energy scan energies are discussed.
Resumo:
Within the framework of a (1 + 1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic gamma*h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed.
Resumo:
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.
Resumo:
Proton nuclear magnetic resonance (H-1 NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T-2 filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T-2 filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T-2 or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.
Influence of Fixation Products Used in the Histological Processing in the FTIR Spectra of Lung Cells
Resumo:
The aim of the present study is to evaluate the differences on FTIR spectra of the normal lung cell (noncancerous mice lung epithelial cell line e10) due to different fixation protocols for histological processing. The results shown that formalin and methacarn (normally used in fixation) did cause many changes on the FTIR spectra of mice lung cells e10, mainly in the organic compounds (800-1800 cm(-1)) in lipids, DNA, and proteins, and the alcohol 70% fixation protocol caused almost no changes on the FTIR spectra compared to unfixed cells spectra (in PBS). It can be concluded that histological processing with alcohol 70% fixation protocol can be used in the FTIR study of mice lung cell line e10.
Resumo:
The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.
Resumo:
The development of polymer-based photovoltaic devices brings the promise of low-cost and lightweight solar energy conversion systems. This technology requires new materials and device architectures with enhanced efficiency and lifetime, which depends on the understanding of charge-transport mechanisms. Organic films combined with electronegative nanoparticles may form systems with efficient dissociation of the photogenerated excitons, thus increasing the number of carriers to be collected by the electrodes. In this paper we investigate the steady-state photoconductive action spectra of devices formed by a bilayer of regio-regular poly(3-hexylthiophene) (RRP3HT) and TiO2 sandwiched between ITO and aluminum electrodes (ITO/TiO2:RRP3HT/Al). Photocurrents were measured for distinct bias voltages with illumination from either side of the device. Heterojunction structures were prepared by spin coating a RRP3HT film on an already deposited TiO2 layer on ITO. Symbatic and antibatic curves were obtained and a model for photocurrent action spectra was able to fit the symbatic responses. The quantum yield increased with the electric field, indicating that exciton dissociation is a field-assisted process as in an Onsager mechanism. Furthermore, the quantum yield was significantly higher when illumination was carried out through the ITO electrode onto which the TiO2 layer was deposited, as the highly electronegative TiO2 nanoparticles were efficient in exciton dissociation.
Resumo:
Um questionamento muito frequente: qual o tempo que se deve esperar para movimentar um dente submetido a tratamento endodôntico, inclusive os de perfuração radicular? A extrapolação dos fenômenos observados em outras regiões da raiz e a fundamentação experimental com base em situações correlatas permitem afirmar que 30 dias correspondem a um período mais do que razoável para o reparo periapical estar em fase avançada de maturação e síntese. As forças ortodônticas são muito leves e dissipantes - muito mais do que o traumatismo dentário, o trauma oclusal e as forças mastigatórias normais -, e não devem interferir na patogenicidade e virulência das microbiotas envolvidas nas necroses e lesões periapicais crônicas, assim como não devem interferir nos fenômenos celulares e teciduais durante a reorganização dos tecidos apicais e periapicais.
Resumo:
Inclusive business is a term currently used to explain the organizations that aim to solve social problems with efficiency and financial sustainability by means of market mechanisms. It can be said that inclusive businesses are those targeted at generating employment and income for groups with little or no market mobility, in keeping with the standards of so-called "decent jobs" and in a self-sustaining manner, i.e., generating profit for the enterprises, and establishing relationships with typical business organizations as suppliers of products and services or in the distribution of this type of production. This article discusses the different concepts found in the scientific literature on inclusive businesses. It also analyses data from a survey conducted with the audiences of Social Corporate Responsibility seminars held by FIEMG. This analysis reveals that prospects, risks and idealizations similar to those found in inclusive business theories can also be found among individuals that run social corporate responsibility projects, even if this designation is new for them. The connection between companies and poverty, especially in relation to inclusive businesses, seems full of stumbling blocks and traps in the Brazilian context.
Resumo:
As novas tecnologias do processador Freedom® foram criadas para proporcionar melhorias no processamento do som acústico de entrada, não apenas para novos usuários, como para gerações anteriores de implante coclear. OBJETIVO: Identificar a contribuição da tecnologia do processador de fala Freedom® para implante coclear multicanal, Nucleus22®, no desempenho de percepção de fala no silêncio e no ruído, e nos limiares audiométricos. MATERIAL E MÉTODO: A forma de estudo foi de coorte histórico com corte transversal. Dezessete pacientes preencheram os critérios de inclusão. Antes de iniciar os testes, o último mapa em uso com o Spectra® foi revisto e otimizado e o funcionamento do processador foi verificado. Os testes de fala foram apresentados a 60dBNPS em material gravado: monossílabos; frases em apresentação aberta no silêncio; e no ruído (SNR = 0dB). Foram realizadas audiometrias em campo livre com ambos os processadores de fala. A análise estatística utilizou testes não-paramétricos. RESULTADOS: Quando analisada a contribuição do Freedom® para pacientes com Nucleus22®, observa-se diferença estatisticamente significativa em todos os testes de percepção de fala e em todos os limiares audiométricos. CONCLUSÃO: A tecnologia contribuiu no desempenho de percepção de fala e nos limiares audiométricos dos pacientes usuários de Nucleus22®.
Resumo:
The first stage of the photosynthetic process is the extraordinary efficiency of sunlight absorption in the visible region [1]. This region corresponds to the maximum of the spectral radiance of the solar emission. The efficient absorption of visible light is one of the most important characteristics of photosynthetic pigments. In chlorophylls, for example, the absorptions are seen as a strong absorption in the region 400-450 nm in connection with other absorptions with small intensities in the region of 500-600 nm. This work aims at understanding the essential features of the absorption spectrum of photosynthetic pigments, in line with several theoretical studies in the literature [2, 3]. The absorption spectra were calculated for H2-Porphyrin, Mg-Porphyrin, and Zn-Porphyrin, and for H2-Phthalocyanine and Mg-Phthalocyanine with and without the four peripheral eugenol substituents. The geometries were optimized using the B3LYP/6-31+G(d) theoretical model. For the calculation of the absorption spectra different TD-DFT calculations were performed (B3LYP, CAM-B3LYP, O3LYP, M06-2X and BP86) along with CIS (D). For the spectra the basis set 6-311++G (d, p) was used for porphyrins and 6-31+G (d) was used for the other systems. At this stage the solvent effects were considered using the simplified continuum model (PCM). First a comparison between the results using the different methods was made. For the porphyrins the best results compared to experiment (both in position and intensities) are obtained with M06-2X and CIS (D). We also analyze the compatibility of the four-orbital model of Gouterman [4] that states that transitions could be well described by the HOMO-1, HOMO, LUMO, and LUMO+1 molecular orbitals. Our results for H2-Porphyrin shows an agreement with other theoretical results and experimental data [5]. For the phthalocyanines (including the four peripheral eugenol substituents) the results are also in good agreement compared with the experimental results given in ref [6]. Finally, the results show that the inclusion of solvent eÆects gives corrections for the spectral shift in the correct direction but numerically small. References [1] R.E. Blankenship; “Molecular Mechanisms of Photosynthesis", Blackwell Science (2002). [2] P. Jaramillo, K. Coutinho, B.J.C. Cabral and S. Canuto; Chem. Phys. Lett., 516, 250(2011). [3] L. Petit, A. Quartarolo, C. Adamo and N. Russo; J. Phys. Chem. B, 110, 2398(2006). [4] M. J. Gouterman; Mol. Spectr., 6, 138(1961). [5] M. Palummo, C. Hogan, F. Sottile, P. Bagal∂a and A. Rubio; J. Chem. Phys., 131, 084102(2009). [6] E. Agar, S. Sasmaz and A. Agar; Turk. J. Chem., 23, 131(1999).