966 resultados para Human Parathyroid-hormone
Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53.
Resumo:
Thyroid hormone nuclear receptors (TRs) are ligand-dependent transcriptional factors that regulate growth, differentiation, and development. The molecular mechanisms by which TRs mediate these effects are unclear. One prevailing hypothesis suggests that TRs may cooperate with other transcriptional factors to mediate their biological effects. In this study, we tested this hypothesis by examining whether the activity of TRs is modulated by the tumor suppressor p53. p53 is a nuclear protein that regulates gene expression via sequence-specific DNA binding and/or direct protein-protein interaction. We found that the human TR subtype beta 1 (h-TR beta 1) physically interacted with p53 via its DNA binding domain. As a result of this physical interaction, binding of h-TR beta 1 to its hormone response elements either as homodimer or as a heterodimer with the retinoic X receptor was inhibited by p53 in a concentration-dependent manner. In transfected cells, wild-type p53 repressed the hormone-dependent transcriptional activation of h-TR beta 1. In contrast, mutant p53 either had no effect or activated the transcriptional activity of h-TR beta 1 depending on the type of hormone response elements. These results indicate the gene regulating activity of TRs was modulated by p53, suggesting that the cross talk between these two transcriptional factors may play an important role in the biology of normal and cancer cells.
Resumo:
Estrogen is a known risk factor in human breast cancer. In rodent models, estradiol has been shown to induce tumors in those tissues in which this hormone is predominantly converted to the catechol metabolite 4-hydroxyestradiol by a specific 4-hydroxylase enzyme, whereas tumors fail to develop in organs in which 2-hydroxylation predominates. We have now found that microsomes prepared from human mammary adenocarcinoma and fibroadenoma predominantly catalyze the metabolic 4-hydroxylation of estradiol (ratios of 4-hydroxyestradiol/2-hydroxyestradiol formation in adenocarcinoma and fibroadenoma, 3.8 and 3.7, respectively). In contrast, microsomes from normal tissue obtained either from breast cancer patients or from reduction mammoplasty operations expressed comparable estradiol 2- and 4-hydroxylase activities (corresponding ratios, 1.3 and 0.7, respectively). An elevated ratio of 4-/2-hydroxyestradiol formation in neoplastic mammary tissue may therefore provide a useful marker of benign or malignant breast tumors and may indicate a mechanistic role of 4-hydroxyestradiol in tumor development.
Resumo:
We have isolated a human cDNA clone encoding the mammalian homolog of stanniocalcin (STC), a calcium- and phosphate-regulating hormone that was first described in fishes where it functions in preventing hypercalcemia. STC has a unique amino acid sequence and, until now, has remained one of the few polypeptide hormones never described in higher vertebrates. Human STC (hSTC) was found to be 247 amino acids long and to share 73% amino acid sequence similarity with fish STC. Polyclonal antibodies to recombinant hSTC localized to a distinct cell type in the nephron tubule, suggesting kidney as a possible site of synthesis. Recombinant hSTC inhibited the gill transport of calcium when administered to fish and stimulated renal phosphate reabsorption in the rat. The evidence suggests that mammalian STC, like its piscine counterpart, is a regulator of mineral homeostasis.
Resumo:
We describe a dominant-negative approach in vivo to assess the strong, early upregulation of thyroid hormone receptor beta (TR beta) gene in response to thyroid hormone, characteristic of the onset of natural and thyroid hormone-induced amphibian metamorphosis, 3,3',5-Triiodo-thyronine (T3) treatment of organ cultures of premetamorphic Xenopus tadpole tails coinjected in vivo with the wild-type Xenopus TR beta (wt-xTR beta) and three different thyroid responsive element chloramphenicol acetyltransferase (TRE-CAT) reporter constructs, including a direct repeat +4 (DR +4) element in the -200/+87 fragment of the xTR beta promoter, resulted in a 4- to 8-fold enhancement of CAT activity. Two human C-terminal TR beta 1 mutants (delta-hTR beta 1 and Ts-hTR beta 1), an artificial Xenopus C-terminal deletion mutant (mt-xTR beta), and the oncogenic viral homology v-erbA, none of which binds T3, inhibited this T3 response of the endogenous wt-xTR in Xenopus XTC-2 cells cotransfected with the -1600/+87 xTR beta promoter-CAT construct, the potency of the dominant-negative effect of these mutant TRs being a function of the strength of their heterodimerization with Xenopus retinoid X receptor gamma. Coinjection of the dominant-negative Xenopus and human mutant TR beta s into Xenopus tadpole tails totally abolished the T3 responsiveness of the wt-xTR beta with different TREs, including the natural DR +4 TRE of the xTR beta promoter.
Resumo:
Thyrotropin is the primary hormone that, via one heptahelical receptor, regulates thyroid cell functions such as secretion, specific gene expression, and growth. In human thyroid, thyrotropin receptor activation leads to stimulation of the adenylyl cyclase and phospholipase C cascades. However, the G proteins involved in thyrotropin receptor action have been only partially defined. In membranes of human thyroid gland, we immunologically identified alpha subunits of the G proteins Gs short, Gs long, Gi1, Gi2, Gi3, G(o) (Go2 and another form of Go, presumably Go1), Gq, G11, G12, and G13. Activation of the thyrotropin (TSH) receptor by bovine TSH led to increased incorporation of the photoreactive GTP analogue [alpha-32P]GTP azidoanilide into immunoprecipitated alpha subunits of all G proteins detected in thyroid membranes. This effect was receptor-dependent and not due to direct G protein stimulation because it was mimicked by TSH receptor-stimulating antibodies of patients suffering from Grave disease and was abolished by a receptor-blocking antiserum from a patient with autoimmune hypothyroidism. The TSH-induced activation of individual G proteins occurred with EC50 values of 5-50 milliunits/ml, indicating that the activated TSH receptor coupled with similar potency to different G proteins. When human thyroid slices were pretreated with pertussis toxin, the TSH receptor-mediated accumulation of cAMP increased by approximately 35% with TSH at 1 milliunits/ml, indicating that the TSH receptor coupled to Gs and G(i). Taken together, these findings show that, at least in human thyroid membranes, in which the protein is expressed at its physiological levels, the TSH receptor resembles a naturally occurring example of a general G protein-activating receptor.
Resumo:
In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues.
Resumo:
The effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2)D3], a steroid hormone with immunomodulating properties, on nuclear factor kappa B (NF-kappa B) proteins was examined in in vitro activated normal human lymphocytes by Western blot analysis. Over a 72-hr period of activation, the expression of the 50-kDa NF-kappa B, p50, and its precursor, p105, was increased progressively. When cells were activated in the presence of 1,25(OH)2D3, the levels of the mature protein as well as its precursor were decreased. The effect of the hormone on the levels of p50 was demonstrable in the cytosolic and nuclear compartments; it required between 4 and 8 hr and was specific, as 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were ineffective. Besides p50, 1,25(OH)2D3 decreased the levels of another NF-kappa B protein, namely c-rel. In addition, 1,25(OH)2D3 decreased the abundance of a specific DNA-protein complex formed upon incubation of nuclear extracts from activated lymphocytes with a labeled NF-kappa B DNA binding motif. Further, 1,25(OH)2D3 inhibited the transcriptional activity of NF-kappa B in Jurkat cells transiently transfected with a construct containing four tandem repeats of the NF-kappa B binding sequence of the immunoglobulin kappa light chain gene linked to the chloramphenicol acetyltransferase reporter gene. These observations demonstrate directly that there is de novo synthesis of NF-kappa B during human lymphocyte activation and suggest that this process is hormonally regulated.
Resumo:
The recombinant human thyroid stimulating hormone (rhTSH) containing oligosaccharides terminated with NeuAc(alpha 2-3)Gal(beta 1-4)GlcNAc beta 1 showed higher in vivo activity and lower metabolic clearance rate (MCR) than pituitary human TSH (phTSH), which contains oligosaccharides terminating predominantly in SO(4)4GalNAc(beta 1-4)GlcNAc beta 1. To elucidate the relative contribution of the sulfated and sialylated carbohydrate chains of each subunit in the MCR and bioactivity of the hormone, the alpha and beta subunits of phTSH, rhTSH, and enzymatically desialylated rhTSH (asialo-rhTSH; asrhTSH) were isolated, their oligosaccharides were analyzed, and the respective subunits were dimerized in various combinations. The hybrids containing alpha subunit from phTSH or asrhTSH showed higher in vitro activity than those with alpha subunit from rhTSH, indicating that sialylation of alpha but not beta subunit attenuates the intrinsic activity of TSH. In contrast, hybrids with beta subunit from rhTSH displayed lower MCR compared to those with beta subunit from phTSH. The phTSH alpha-rhTSH beta hybrid had the highest in vivo bioactivity followed by rhTSH alpha-rhTSH beta, rhTSH alpha-phTSH beta, phTSH alpha-phTSH beta, and asrhTSH dimers. These differences indicated that hybrids with beta subunit from rhTSH displayed the highest in vivo activity and relatively low MCR, probably due to higher sialylation, more multiantennary structure, and/or the unique location of the beta-subunit oligosaccharide chain in the molecule. Thus, the N-linked oligosaccharides of the beta subunit of glycoprotein hormones have a more pronounced role than those from the alpha subunit in the metabolic clearance and thereby in the in vivo bioactivity. In contrast, the terminal residues of alpha-subunit oligosaccharides have a major impact on TSH intrinsic potency.
Resumo:
Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors. Preliminary data indicated that one of the major components of IBP-s was human estrogen-related receptor 1 (hERR1). We show here that several members of the steroid/thyroid hormone receptor superfamily, including testis receptor 2, thyroid receptor alpha 1 in combination with retinoid X receptor alpha, chicken ovalbumin upstream promoter transcription factors 1 and 2 (COUP-TF1 and COUP-TF2), as well as hERR1, possess the properties of IBP-s. These receptors bind specifically to hormone receptor binding sites present in the SV40 major late promoter. Recombinant COUP-TF1 specifically represses transcription from the SV40 major late promoter in a cell-free transcription system. Expression of COUP-TF1, COUP-TF2, or hERR1 in monkey cells results in repression of the SV40 late promoter, but not the early promoter, in the absence of the virally encoded large tumor antigen. Overexpression of COUP-TF1 leads to a delay in the early-to-late switch in SV40 gene expression during the lytic cycle of infection. Thus, members of this superfamily can play major direct roles in regulating expression of SV40. Possibly, natural or synthetic ligands to these receptors can serve as antiviral drugs. Our findings also provide the basis for the development of assays to screen for the ligands to testis receptor 2 and hERR1.
Resumo:
A G protein-coupled receptor for the pineal hormone melatonin was recently cloned from mammals and designated the Mel1a melatonin receptor. We now report the cloning of a second G protein-coupled melatonin receptor from humans and designate it the Mel1b melatonin receptor. The Mel1b receptor cDNA encodes a protein of 362 amino acids that is 60% identical at the amino acid level to the human Mel1a receptor. Transient expression of the Mel1b receptor in COS-1 cells results in high-affinity 2-[125I]iodomelatonin binding (Kd = 160 +/- 30 pM). In addition, the rank order of inhibition of specific 2-[125I]iodomelatonin binding by eight ligands is similar to that exhibited by the Mel1a melatonin receptor. Functional studies of NIH 3T3 cells stably expressing the Mel1b melatonin receptor indicate that it is coupled to inhibition of adenylyl cyclase. Comparative reverse transcription PCR shows that the Mel1b melatonin receptor is expressed in retina and, to a lesser extent, brain. PCR analysis of human-rodent somatic cell hybrids maps the Mel1b receptor gene (MTNR1B) to human chromosome 11q21-22. The Mel1b melatonin receptor may mediate the reported actions of melatonin in retina and participate in some of the neurobiological effects of melatonin in mammals.
Resumo:
We have previously identified tyrosine-537 as a constitutively phosphorylated site on the human estrogen receptor (hER). A 12-amino acid phosphotyrosyl peptide containing a selected sequence surrounding tyrosine-537 was used to investigate the function of phosphotyrosine-537. The phosphotyrosyl peptide completely blocked the binding of the hER to an estrogen response element (ERE) in a gel mobility shift assay. Neither the nonphosphorylated tyrosyl peptide nor an unrelated phosphotyrosyl peptide previously shown to inhibit the signal transducers and activators of transcription factor (STAT) blocked binding of the hER to the ERE. The hER phosphotyrosyl peptide was shown by molecular sizing chromatography to dissociate the hER dimer into monomers. The hER specifically bound the 32P-labeled phosphotyrosyl peptide, indicating that the inhibition of ERE binding was caused by the phosphotyrosyl peptide binding directly to the hER and blocking dimerization. These data suggest that the phosphorylation of tyrosine-537 is a necessary step for the formation of the hER dimer. In addition, we propose that the dimerization of the hER occurs by a previously unrecognized Src homology 2 domain (SH2)-like phosphotyrosyl coupling mechanism. Consequently, the phosphotyrosyl peptide represents a class of antagonists that inhibits estrogen action by a mechanism other than interacting with the receptor's hormone binding site.
Resumo:
The GH receptor (GHR) mediates metabolic and somatogenic actions of GH. Its extracellular domain (ECD; residues 1-246) has two subdomains, each with seven beta strands organized into two antiparallel beta sheets, connected by a short hinge region. Most of the ECD residues involved in GH binding reside in subdomain 1, whereas subdomain 2 harbors a dimerization interface between GHR dimers that alters conformation in response to GH. A regulated GHR metalloprotease cleavage site is in the membrane-proximal stem region of subdomain 2. We have identified a monoclonal anti-ECD antibody, anti-GHR(ext-mAb), which recognizes the rabbit and human GHRs by immunoprecipitation, but less so after GH treatment. By immunoblotting and immunoprecipitation, anti-GHR(ext-mAb) recognized a glutathione-S-transferase (GST) fusion incorporating subdomain 2, but not one including subdomain 1. In transient transfection experiments, anti-GHR(ext-mAb) failed to recognize by immunoprecipitation a previously characterized dimerization interface mutant GHR that is incompetent for signaling. In signaling experiments, brief pretreatment of GH-responsive human fibrosarcoma cells with anti-GHR(ext-mAb) dramatically inhibited GH-induced Janus kinase 2 and signal transducer and activator of transcription 5 tyrosine phosphorylation and prevented GH-induced GHR disulfide linkage (a reflection of GH-induced conformational changes). In contrast, anti-GHR(ext-mAb) only partially inhibited radiolabeled GH binding, suggesting its effects on signaling were not simply via inhibition of binding. Furthermore, anti-GHR(ext-mAb) prevented phorbol ester-stimulated GHR proteolysis, but GHR cleavage site mutants were normally recognized by the antibody, indicating that the stem region cleavage site is not a direct epitope. A Fab fragment of anti-GHR(ext-mAb) inhibited GH-induced GHR disulfide linkage and signaling, as well as phorbol ester-induced GHR proteolysis, in a fashion similar to the intact antibody. Thus, our findings suggest that anti-GHR(ext-mAb) has promise as a GH antagonist and as a tool in studies of conformational changes required for GHR activation.
Resumo:
alpha-Melanocyte-stimulating hormone (alpha-MSH) activates the melanocortin-1 receptor (MC1R) on melanocytes to promote a switch from red/yellow pheomelanin synthesis to darker eumelanins via positive coupling to adenylate cyclase. The human MC1R locus is highly polymorphic with the specific variants associated with red hair and fair skin (RHC phenotype) postulated to be loss-of-function receptors. We have examined the ability of MC1R variants to activate the cAMP pathway in stably transfected REK293 cells. The RHC associated variants, Arg151Cys, Arg160Trp and Asp294His, demonstrated agonist-mediated increases in cAMP and phosphorylation of cAMP-responsive element-binding protein (CREB). Whereas the Asp294His variant showed severely impaired functional responses, the Arg151Cys and Arg160Trp variants retained considerable signaling capacity. Melanoma cells homozygous for either the Arg151Cys variant or consensus sequence both elicited CREB phosphorylation in response to alpha-MSH in the presence of IBMX. The common RHC alleles, Arg151Cys, Arg160Trp and Asp294His, are neither complete loss-of-function receptors nor are they functionally equivalent. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer ( FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.
Resumo:
The human melanocortin-1 receptor gene (MC1R) encodes a G-protein coupled receptor that is primarily expressed on melanocytes, where it plays a key role in pigmentation regulation. Variant alleles are associated with red hair colour and fair skin, known as the RHC phenotype, as well as skin cancer risk. The R151C, R160W and D294H alleles, designated 'R', are strongly associated with the RHC phenotype and have been proposed to result in loss of function receptors due to impaired G-protein coupling. We recently provided evidence that the R151C and R160W variants can efficiently couple to G-proteins in response to alpha-melanocyte stimulating hormone. The possibility that altered cellular localization of the R151C and R160W variant receptors could underlie their association with RHC was therefore considered. Using immunofluorescence and ligand binding studies, we found that melanocytic cells exogenously or endogenously expressing MC1R show strong surface localization of the wild-type and D294H alleles but markedly reduced cell surface expression of the R151C and R160W receptors. In additional exogenous expression studies, the R variant D84E and the rare I155T variant, also demonstrated a significant reduction in plasma membrane receptor numbers. The V60L, V92M and R163Q weakly associated RHC alleles, designated 'r', were expressed with normal or intermediate cell surface receptor levels. These results indicate that reduced receptor coupling activity may not be the only contributing factor to the genetic association between the MC1R variants and the RHC phenotype, with MC1R polymorphisms now linked to a change in receptor localization.