872 resultados para Homographic Transformation
Resumo:
Annotation of programs using embedded Domain-Specific Languages (embedded DSLs), such as the program annotation facility for the Java programming language, is a well-known practice in computer science. In this paper we argue for and propose a specialized approach for the usage of embedded Domain-Specific Modelling Languages (embedded DSMLs) in Model-Driven Engineering (MDE) processes that in particular supports automated many-step model transformation chains. It can happen that information defined at some point, using an embedded DSML, is not required in the next immediate transformation step, but in a later one. We propose a new approach of model annotation enabling flexible many-step transformation chains. The approach utilizes a combination of embedded DSMLs, trace models and a megamodel. We demonstrate our approach based on an example MDE process and an industrial case study.
Resumo:
We present a scheme for generating entanglement between two mechanical oscillators that have never interacted with each other by using an entanglement-swapping protocol. The system under study consists of a Michelson-Morley interferometer comprising mechanical systems embodied by two cantilevers. Each of them is coupled to a field mode via the radiation pressure mechanism. Entanglement between the two mechanical systems is set by measuring the output modes of the interferometer. We also propose a control mechanism for the amount of entanglement based on path-length difference between the two arms.
Resumo:
The paper presents a new method to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model (“kinetic model-free procedure”). It is a new non-steady-state kinetic characterization procedure for heterogeneous catalysts. The mathematical foundation of the Y-procedure is a Laplace-domain analysis of the two inert zones in a TZTR followed by transposition to the Fourier domain. When combined with time discretization and filtering the Y-procedure leads to an efficient practical method for reconstructing the concentration and reaction rate in the active zone. Using the Y-procedure the concentration and reaction rate of a non-steady state catalytic process can be determined without any pre-assumption regarding the type of kinetic dependence. The Y-procedure is the basis for advanced software for non-steady state kinetic data interpretation. The Y-procedure can be used to relate changes in the catalytic reaction rate and kinetic parameters to changes in the surface composition (storage) of a catalyst.
Resumo:
This article examines music in Med Hondo’s Sarraounia, considering how it contributes to the dramatic form of the movie while concurrently articulating narratives regarding cultural transformation through both its extrinsic (cultural) and intrinsic (formal) dimensions. Examining how the use of traditional and contemporary African music politicises diegetic space by referring us to the relationships between indigenous musical forms and their global, culturally hybrid descendents, it then demonstrates the complex manner in which the film uses the formal specificities of African and Western musical idioms to articulate a narrative regarding the cultural transformations that occur when an oral culture (Africa) encounters a literate, modernised culture (the West).
Resumo:
NH4[Hg-3(NH)(2)](NO3)(3) (1) and [Hg2N](NO3) (2) are obtained from cone. aqueous ammonia solutions of Hg(NO3)(2) at ambient temperature and under hydrothermal conditions at 180 degreesC, respectively, as colourless and dark yellow to light brown single crystals. The crystal structures {NH4[Hg-3(NH)(2)](NO3)(3): cubic, P4(I)32, a = 1030.4(2) pm, Z = 4, R-all = 0.028; [Hg2N](NO3): tetragonal, P4(3)2(1)2, a = 1540.4(1), c = 909.8(1) pm, Z = 4, R-all = 0.054} have been determined from single crystal data. Both exhibit network type structures in which [HNHg3] and [NHg4] tetrahedra of the partial structures of 1 and 2 are connected via three and four vertices, respectively. 1 transforms at about 270 degreesC in a straightforward reaction to 2 whereby the decomposition products of NH4NO3 are set free. 2 decomposes at about 380 degreesC forming yellow HgO. Most certainly, I is identical with a mineral previously analyzed as
Resumo:
An architecture to simultaneously affect both amplitude and phase control from a reflectarray element using an impedance transformation unit is demonstrated. It is shown that a wide range of control is possible from a single element, removing the conventional necessity for variable sized elements across an array in order to form a desired reflectarray far-field pattern. Parallel plate waveguide measurements for a 2.2 GHz prototype element validate the phase and amplitude variation available from the element. It is demonstrated that there is sufficient control of the element's reflection response to allow Dolph-Tschebyscheff weighting coefficients for major-lobe to side-lobe ratios of up to 36 dB to be implemented.