967 resultados para High-dynamic range images
Resumo:
This work describes a method to determine Cu at wide range concentrations in a single run without need of further dilutions employing high-resolution continuum source flame atomic absorption spectrometry. Different atomic lines for Cu at 324. 754 nm, 327. 396 nm, 222. 570 nm, 249. 215 nm and 224. 426 nm were evaluated and main figures of merit established. Absorbance measurements at 324. 754 nm, 249. 215 nm and 224. 426 nm allows the determination of Cu in the 0. 07-5. 0 mg L -1, 5. 0-100 mg L -1 and 100-800 mg L -1 concentration intervals respectively with linear correlation coefficients better than 0. 998. Limits of detection were 21 μg L -1, 310 μg L -1 and 1400 μg L -1 for 324. 754 nm, 249. 215 nm and 224. 426 nm, respectively and relative standard deviations (n = 12) were ≤ 2. 7%. The proposed method was applied to water samples spiked with Cu and the results were in agreement at a 95% of confidence level (paired t-test) with those obtained by line-source flame atomic absorption spectrometry.
Resumo:
Intestinal parasitosis constitutes a serious health problem in most tropical countries. The diagnosis of enteroparasites in laboratory routine relies on the examination of stool samples using optical microscopy and the error rates usually range from moderate to high. Approaches based on automatic image analysis have been proposed, but the methods are usually specific for some species, some of them are computationally expensive, and image acquisition and focus are manual. We present a solution to automate the diagnosis of the 15 most common species of enteroparasites in Brazil, using a sensitive parasitological technique, a motorized microscope with digital camera for automatic image acquisition and focus, and fast image analysis methods. The results indicate that our solution is effective and suitable for laboratory routine, in which the exam must be concluded in a few minutes. © 2013 IEEE.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Excessive rearfoot eversion is thought to be a risk factor for patellofemoral pain development, due to the kinesiological relationship with ascendant adaptations. Individuals with patellofemoral pain are often diagnosed through static clinical tests, in scientific studies and clinical practice. However, the adaptations seem to appear in dynamic conditions. Performing static vs. dynamic evaluations of widely used measures would add to the knowledge in this area. Thus, the aim of this study was to determine the reliability and differentiation capability of three rearfoot eversion measures: rearfoot range of motion, static clinical test and static measurement using a three-dimensional system. A total of 29 individuals with patellofemoral pain and 25 control individuals (18-30 years) participated in this study. Each subject underwent three-dimensional motion analysis during stair climbing and static clinical tests. Intraclass correlation coefficient and standard error measurements were performed to verify the reliability of the variables and receiver operating characteristic curves to show the diagnostic accuracy of each variable. In addition, analyses of variance were performed to identify differences between groups. Rearfoot range of motion demonstrated higher diagnostic accuracy (an area under the curve score of 0.72) than static measures and was able to differentiate the groups. Only the static clinical test presented poor and moderate reliability. Other variables presented high to very high values. Rearfoot range of motion was the variable that presented the best results in terms of reliability and differentiation capability. Static variables do not seem to be related to patellofemoral pain and have low accuracy values.
Resumo:
High-frequency ultrasound is a non-invasive tool used in skin ageing research to assess dermis thickness and echogenicity. This study evaluated the reliability of a range of high-frequency ultrasound parameters and tested their correlation with age and a validated clinical scale for the assessment of forearm skin photoageing; the difference between two body sites according to environmental exposition patterns was also investigated. Twenty-three volunteers aged 28-82 years were divided into three groups according to forearm photoageing degree. A 20 MHz ultrasound unit was used to obtain cross-sectional images of the skin by two trained investigators on two different sites: the dorsal forearm (chronically photoexposed skin) and the proximal medial arm (non-photoexposed skin). Several echogenicity parameters were studied for each skin compartment: total dermis, upper dermis and lower dermis, and the ratio between upper and lower dermis. The intraclass correlation coefficient (for complete agreement) between investigators was higher for upper and total dermis echogenicity measures compared with the lower dermis. At the non-photoexposed site, the upper and lower dermis parameter ratio was better correlated with age. At the photoexposed area, total dermis parameters demonstrated higher correlations with clinical score. The authors discuss the choice of parameters for forearm photoageing assessment using high-frequency ultrasound.
Resumo:
The human eye is sensitive to visible light. Increasing illumination on the eye causes the pupil of the eye to contract, while decreasing illumination causes the pupil to dilate. Visible light causes specular reflections inside the iris ring. On the other hand, the human retina is less sensitive to near infra-red (NIR) radiation in the wavelength range from 800 nm to 1400 nm, but iris detail can still be imaged with NIR illumination. In order to measure the dynamic movement of the human pupil and iris while keeping the light-induced reflexes from affecting the quality of the digitalized image, this paper describes a device based on the consensual reflex. This biological phenomenon contracts and dilates the two pupils synchronously when illuminating one of the eyes by visible light. In this paper, we propose to capture images of the pupil of one eye using NIR illumination while illuminating the other eye using a visible-light pulse. This new approach extracts iris features called "dynamic features (DFs)." This innovative methodology proposes the extraction of information about the way the human eye reacts to light, and to use such information for biometric recognition purposes. The results demonstrate that these features are discriminating features, and, even using the Euclidean distance measure, an average accuracy of recognition of 99.1% was obtained. The proposed methodology has the potential to be "fraud-proof," because these DFs can only be extracted from living irises.
Resumo:
We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp(3) bonding for the DLC, demonstrating that some sp(3) bonds are destroyed by the gold implantation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757029]
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A computational pipeline combining texture analysis and pattern classification algorithms was developed for investigating associations between high-resolution MRI features and histological data. This methodology was tested in the study of dentate gyrus images of sclerotic hippocampi resected from refractory epilepsy patients. Images were acquired using a simple surface coil in a 3.0T MRI scanner. All specimens were subsequently submitted to histological semiquantitative evaluation. The computational pipeline was applied for classifying pixels according to: a) dentate gyrus histological parameters and b) patients' febrile or afebrile initial precipitating insult history. The pipeline results for febrile and afebrile patients achieved 70% classification accuracy, with 78% sensitivity and 80% specificity [area under the reader observer characteristics (ROC) curve: 0.89]. The analysis of the histological data alone was not sufficient to achieve significant power to separate febrile and afebrile groups. Interesting enough, the results from our approach did not show significant correlation with histological parameters (which per se were not enough to classify patient groups). These results showed the potential of adding computational texture analysis together with classification methods for detecting subtle MRI signal differences, a method sufficient to provide good clinical classification. A wide range of applications of this pipeline can also be used in other areas of medical imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.
Resumo:
Das Ziel der vorliegenden Arbeit ist die Untersuchung der räumlichen und zeitlichen Aspekte der heterogenen Dynamik in Modellglasbildnern. Dabei wird vor allem die langsame alpha-Relaxationsdynamik oberhalb des Glasüberganges Tg untersucht. Die nukleare Magnetresonanz zeigt ihre einmalige Vielseitigkeit bei der Untersuchung molekularer Dynamik, wenn die angewandten Techniken und Experimente durch Simulationen unterstützt werden. Die räumliche Aspekt dynamischer Heterogenitäten wird untersucht durch ein reduziertes vierdimensionales Spindiffusionsexperiment (4D3CP), ein Experiment, das Reorientierungsraten örtlich korreliert. Eine Simulation dieses Experimentes an einem System harter Kugeln liefert wertvolle Informationen über die Auswertemethode des 4D3CP Experiments. Glycerol und o-terphenyl werden durch das 4D3CP Experiment untersucht. Die erhaltenen Resultate werden mit bereits publizierten Daten des polymeren Glasbildners PVAc verglichen. Während PVAc und o-terphenyl eine Längenskale von 3.7 nm bzw. 2.9 nm aufweisen, ist die Längenskale von Glycerol signifikant kleiner bei 1.1 nm. Ein neues Experiment, welches sensitiv auf Translationsbewegung reagiert, wird vorgestellt. Durch Verwendung eines pi-Impulszuges kann eine separate Evolution unter dem Hamiltonian der dipolaren Kopplung und der chemischen Verschiebungsanisotropie erreicht werden.
Resumo:
Electronic applications are nowadays converging under the umbrella of the cloud computing vision. The future ecosystem of information and communication technology is going to integrate clouds of portable clients and embedded devices exchanging information, through the internet layer, with processing clusters of servers, data-centers and high performance computing systems. Even thus the whole society is waiting to embrace this revolution, there is a backside of the story. Portable devices require battery to work far from the power plugs and their storage capacity does not scale as the increasing power requirement does. At the other end processing clusters, such as data-centers and server farms, are build upon the integration of thousands multiprocessors. For each of them during the last decade the technology scaling has produced a dramatic increase in power density with significant spatial and temporal variability. This leads to power and temperature hot-spots, which may cause non-uniform ageing and accelerated chip failure. Nonetheless all the heat removed from the silicon translates in high cooling costs. Moreover trend in ICT carbon footprint shows that run-time power consumption of the all spectrum of devices accounts for a significant slice of entire world carbon emissions. This thesis work embrace the full ICT ecosystem and dynamic power consumption concerns by describing a set of new and promising system levels resource management techniques to reduce the power consumption and related issues for two corner cases: Mobile Devices and High Performance Computing.
Resumo:
Aim of this research is the development and validation of a comprehensive multibody motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of road surfaces. A novel parametrization for the general kinematics of the motorcycle is proposed, using a mixed reference-point and relative-coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to efficiently include rigid-ring kinematics as well as road elevation and slope. The equations of motion for the multibody system are derived symbolically and the constraint equations arising from the dependent-coordinate formulation are handled using a projection technique. Therefore the resulting system of equations can be integrated in time domain using a standard ODE algorithm. The model is validated with respect to maneuvers experimentally measured on the race track, showing consistent results and excellent computational efficiency. More in detail, it is also capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, appearing during high speed cornering maneuvers, consists of a self-excited vertical oscillation of both the front and rear unsprung masses in the range of frequency between 17 and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, consistent with the experimentally measured chatter vibration. Finally, the driving mechanism for the self-excitation is highlighted and a physical interpretation is proposed.
Resumo:
In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.