948 resultados para High Flow Conditions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is characterized by impaired beta cell function and insulin resistance. T2D susceptibility genes identified by Genome-wide association studies (GWAS) are likely to have roles in both impaired insulin secretion from the beta cell as well as insulin resistance. The aim of this study was to use gene expression profiling to assess the effect of the diabetic milieu on the expression of genes involved in both insulin secretion and insulin resistance. We measured the expression of 43 T2D susceptibility genes in the islets, adipose and liver of leptin-deficient Ob/Ob mice compared with Ob/+ littermates. The same panel of genes were also profiled in cultured rodent adipocytes, hepatocytes and beta cells in response to high glucose conditions, to distinguish expression effects due to elevated glycemia from those on the causal pathway to diabetes or induced by other factors in the diabetic microenviroment. We found widespread deregulation of these genes in tissues from Ob/Ob mice, with differential regulation of 23 genes in adipose, 18 genes in liver and one gene (Tcf7l2) in islets of diabetic animals (Ob/Ob) compared to control (Ob/+) animals. However, these expression changes were in most cases not noted in glucose-treated adipocyte, hepatocyte or beta cell lines, indicating that they may not be an effect of hyperglycemia alone. This study indicates that expression changes are apparent with diabetes in both the insulin producing beta cells, but also in peripheral tissues involved in insulin resistance. This suggests that incidence or progression of diabetic phenotypes in a mouse model of diabetes is driven by both secretory and peripheral defects. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart New York.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asthenopia, or visual fatigue, is a frequent complaint from observers of stereoscopic three-dimensional displays. It has been proposed that asthenopia is a consequence of anomalous oculomotor responses generated by conflict between accommodative and convergence stimuli. The hypothesis was examined by measuring accommodation and convergence continuously with a Shin-Nippon SRW5000 infrared autorefractor and a limbus tracking device. Subjects viewed a high contrast Maltese Cross target at three levels of Gaussian filter target blur under conditions of relatively low- and high-conflict between accommodation and convergence stimuli, the latter inducing the sensation of stereopsis. Under the low-conflict conditions accommodation was stable, but convergence-driven accommodation was dominant when the target was extremely blurred. Under the high-conflict conditions the role of convergence-driven accommodation increased systematically with the degree of target blur. It is proposed that defocus-driven accommodation becomes weak when the target comprises low spatial frequency components. Large accommodative overshoots to step stimuli that are not blurred or only mildly blurred were consistently observed and are attributed to the initial accommodative response being convergence-driven. Whereas the possibility that high-conflict conditions are a cause of asthenopia has been previously reported, this is the first evidence that they specifically affect accommodative responses while viewing stereoscopic displays. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aging responses of 2124 Al-SiC p metal matrix composite (MMC) and unreinforced matrix alloy are studied and related to variations in tensile properties. The MMC is aged from Wo starting conditions: (i) stretched and naturally aged and (ii) re-solution treated. Accelerated aging occurs in both MMC conditions compared with unreinforced alloy. Tensile strengths and elastic moduli are improved in the MMC compared with the alloy, but ductility is reduced. Stretched MMC exhibits higher strength but lower ductility and modulus than re-solutioned MMC. The re-solutioned MMC fails by microvoid coalescence in low aging conditions, and by void nucleation and shear in high aging conditions. Failure of the stretched MMC initiates at the surface at specimen shoulders, illustrating the increased notch sensitivity of this condition, and propagates via a zigzag shear fracture mode. Zigzag facet size increases on gross aging. Particle fracture occurs during tensile failure, but also before testing as a result of the manufacturing process. © 1995 The Institute of Materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make life style choices that may reduce the risk of disease. This review discusses the role of genetics, sunlight, diet, cardiovascular factors, smoking, and alcohol as possible risk factors for AMD. Genetics plays a more significant role in AMD than previously thought, especially in younger patients, histocompatibility locus antigen (HLA) and complement system genes being the most significant. Whether the risk of AMD is increased by exposure to sunlight, cardiovascular risk factors, and diet is more controversial. Smoking is the risk factor most consistently associated with AMD. Current smokers are exposed to a two to three times higher risk of AMD than non-smokers and the risk increases with intensity of smoking. Moderate alcohol consumption is unlikely to increase the risk of AMD. Optometrists as front-line informers and educators of ocular health play a significant role in increasing public awareness of the risks of AMD. Cessation of smoking, the use of eye protection in high light conditions, dietary changes, and regular use of dietary supplements should all be considered to reduce the lifetime risk of AMD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make life style choices that may reduce the risk of disease. This review discusses the role of genetics, sunlight, diet, cardiovascular factors, smoking, and alcohol as possible risk factors for AMD. Genetics plays a more significant role in AMD than previously thought, especially in younger patients, histocompatibility locus antigen (HLA) and complement system genes being the most significant. Whether the risk of AMD is increased by exposure to sunlight, cardiovascular risk factors, and diet is more controversial. Smoking is the risk factor most consistently associated with AMD. Current smokers are exposed to a two to three times higher risk of AMD than non-smokers and the risk increases with intensity of smoking. Moderate alcohol consumption is unlikely to increase the risk of AMD. Optometrists as front-line informers and educators of ocular health play a significant role in increasing public awareness of the risks of AMD. Cessation of smoking, the use of eye protection in high light conditions, dietary changes, and regular use of dietary supplements should all be considered to reduce the lifetime risk of AMD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make life style choices that may reduce the risk of disease. This review discusses the role of genetics, sunlight, diet, cardiovascular factors, smoking, and alcohol as possible risk factors for AMD. Genetics plays a more significant role in AMD than previously thought, especially in younger patients, histocompatibility locus antigen (HLA) and complement system genes being the most significant. Whether the risk of AMD is increased by exposure to sunlight, cardiovascular risk factors, and diet is more controversial. Smoking is the risk factor most consistently associated with AMD. Current smokers are exposed to a two to three times higher risk of AMD than non-smokers and the risk increases with intensity of smoking. Moderate alcohol consumption is unlikely to increase the risk of AMD. Optometrists as front-line informers and educators of ocular health play a significant role in increasing public awareness of the risks of AMD. Cessation of smoking, the use of eye protection in high light conditions, dietary changes, and regular use of dietary supplements should all be considered to reduce the lifetime risk of AMD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The developmental responses of plants to shade underneath foliage are influenced by reductions in irradiance and shifts in spectral quality (characterized by reductions in the quantum ratio of red to far-red wavelengths, R:FR). Previous research on the influence of shadelight on leaf development has neglected the reductions in R:FR characteristic of foliage shade, and these studies have almost certainly underestimated the extent and array of developmental responses to foliage shade. We have studied the effects of reduced irradiance and R:FR on the leaf development of papaya (Carica papaya L., Caricaceae). Using experimental shadehouses, replicates of plants grown in high light conditions (0.20 of sunlight and R:FR = 0.90) were compared to low light conditions (0.02 of sunlight) with either the spectral quality of sunlight (R:FR = 0.99) or of foliage shade (F:FR = 0.26). Although many characteristics, such as leaf thickness, specific leaf weight, stomatal density, palisade parenchyma cell shape, and the ratio of mesophyll air surface/leaf surface were affected by reductions in irradiance, reduced R:FR contributed to further changes. Some characters, such as reduced chlorophyll a/b ratios, reduced lobing, and greater internode length, were affected primarily by low R:FR. The reduced R:FR of foliage shade, presumably affecting phytochrome equilibrium, strongly influences the morphology and anatomy of papaya leaves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this research is to develop nanoscale ultrasensitive transducers for detection of biological species at molecular level using carbon nanotubes as nanoelectrodes. Rapid detection of ultra low concentration or even single DNA molecules are essential for medical diagnosis and treatment, pharmaceutical applications, gene sequencing as well as forensic analysis. Here the use of functionalized single walled carbon nanotubes (SWNT) as nanoscale detection platform for rapid detection of single DNA molecules is demonstrated. The detection principle is based on obtaining electrical signal from a single amine terminated DNA molecule which is covalently bridged between two ends of an SWNT separated by a nanoscale gap. The synthesis, fabrication, chemical functionalization of nanoelectrodes and DNA attachment were optimized to perform reliable electrical characterization these molecules. Using this detection system fundamental study on charge transport in DNA molecule of both genomic and non genomic sequences is performed. We measured an electrical signal of about 30 pA through a hybridized DNA molecule of 80 base pair in length which encodes a portion of sequence of H5N1 gene of avian Influenza A virus. Due the dynamic nature of the DNA molecules the local environment such as ion concentration, pH and temperature significantly influence its physical properties. We observed a decrease in DNA conductance of about 33% in high vacuum conditions. The counterion variation was analyzed by changing the buffer from sodium acetate to tris(hydroxymethyl) aminomethane, which resulted in a two orders of magnitude increase in the conductivity of the DNA. The fabrication of large array of identical SWNT nanoelectrodes was achieved by using ultralong SWNTs. Using these nanoelectrode array we have investigated the sequence dependent charge transport in DNA. A systematic study performed on PolyG - PolyC sequence with varying number of intervening PolyA - PolyT pairs showed a decrease in electrical signal from 180 pA (PolyG - PolyC) to 30 pA with increasing number of the PolyA - PolyT pairs. This work also led to the development of ultrasensitive nanoelectrodes based on enzyme functionalized vertically aligned high density multiwalled CNTs for electrochemical detection of cholesterol. The nanoelectrodes exhibited selectively detection of cholesterol in the presence of common interferents found in human blood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. ^ The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Future climate change will likely represent a major stress to shallow aquatic and coastal marine communities around the world. Most climate change research, particularly in regards to increased pCO2 and ocean acidification, relies on ex situ mesocosm experimentation, isolating target organisms from their environment. Such mesocosms allow for greater experimental control of some variables, but can often cause unrealistic changes in a variety of environmental factors, leading to “bottle effects.” Here we present an in situ technique of altering dissolved pCO2within nearshore benthic communities (e.g., macrophytes, algae, and/or corals) using submerged clear, open-top chambers. Our technique utilizes a flow-through design that replicates natural water flow conditions and minimizes caging effects. The clear, open-top design additionally ensures that adequate light reaches the benthic community. Our results show that CO2 concentrations and pH can be successfully manipulated for long durations within the open-top chambers, continuously replicating forecasts for the year 2100. Enriched chambers displayed an average 0.46 unit reduction in pH as compared with ambient chambers over a 6-month period. Additionally, CO2 and HCO3 – concentrations were all significantly higher within the enriched chambers. We discuss the advantages and disadvantages of this technique in comparison to other ex situ mesocosm designs used for climate change research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hydrodynamic threshold between Darcian and non-Darcian flow conditions was found to occur in cubes of Key Largo Limestone from Florida, USA (one cube measuring 0.2 m on each side, the other 0.3 m) at an effective porosity of 33% and a hydraulic conductivity of 10 m/day. Below these values, flow was laminar and could be described as Darcian. Above these values, hydraulic conductivity increased greatly and flow was non-laminar. Reynolds numbers (Re) for these experiments ranged from

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Comprehensive Everglades Restoration includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the Southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The effect of altered hydrologic regime on the transport dynamics of flocculent, estuarine detritus is not well understood. We utilized a paramagnetic sediment tracer to examine detrital transport in three Taylor River pond/creek pairs during early wet versus late wet transition season estuarine flow conditions. Flux of floc tracer was greatest in the downstream direction during all observations, and was most pronounced during the early wet season, coincident with shallower water depth and faster discharge from northern Taylor River. Floc tracer was more likely to move upriver during the late wet/dry season. We observed a floc tracer transport velocity of approximately 1.74 to 1.78 m/day across both seasonal hydrologic conditions. Tracer dynamics were also surprisingly site-dependent, which may highlight the importance of channel geomorphology in regulating hydrologic and sediment transport conditions. Our data suggest that restoration of surface water delivery to Taylor River will influence downstream loading of detritus material into riverine ponds. These detrital inputs have the potential to enhance ecosystem primary productivity and/or secondary productivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Freshwater use is a major concern in the mass production of algae for biofuels. This project examined the use of canal water obtained from the Everglades Agricultural Area as a base medium for the mass production of algae. This water is not suitable for human consumption, and it is currently used for crop irrigation. A variety of canals were found to be suitable for water collection. Comparison of two methods for algal production showed no significant difference in biomass accumulation. It was discovered that synthetic reticulated foam can be used for algal biomass collection and harvest, and there is potential for its application in large-scale operations. Finally, it was determined that high alkaline conditions may help limit contaminants and competing organisms in growing algae cultures.