527 resultados para Herpes Zoster
Resumo:
Recombinant adenoviral mediated delivery of suicide and cytokine genes has been investigated as a treatment for hepatic metastases of colon carcinoma in mice. Liver tumors were established by intrahepatic implantation of a poorly immunogenic colon carcinoma cell line (MCA-26), which is syngeneic in BALB/c mice. Intratumoral transfer of the herpes simplex virus type 1 thymidine kinase (HSV-tk) and the murine interleukin (mIL)-2 genes resulted in substantial hepatic tumor regression, induced an effective systemic antitumoral immunity in the host and prolonged the median survival time of the treated animals from 22 to 35 days. The antitumoral immunity declined gradually, which led to tumor recurrence over time. A recombinant adenovirus expressing the mIL-12 gene was constructed and tested in the MCA-26 tumor model. Intratumoral administration of this cytokine vector alone increased significantly survival time of the animals with 25% of the treated animals still living over 70 days. These data indicate that local expression of IL-12 may also be an attractive treatment strategy for metastatic colon carcinoma.
Resumo:
The recent discovery of long term AIDS nonprogressors who harbor nef-attenuated HIV suggests that a naturally occurring live vaccine for AIDS may already exist. Animal models have shown that a live vaccine for AIDS, attenuated in nef, is the best candidate vaccine. There are considerable risks, real and perceived, with the use of live HIV vaccines. We have introduced a conditional lethal genetic element into HIV-1 and simian immunodeficiency virus (SIV) molecular clones deleted in nef. The antiviral strategy we employed targets both virus replication and the survival of the infected cell. The suicide gene, herpes simplex virus thymidine kinase (tk), was expressed and maintained in HIV over long periods of time. Herpes simplex virus tk confers sensitivity to the antiviral activity of acyclic nucleosides such as ganciclovir (GCV). HIV-tk and SIV-tk replication were sensitive to GCV at subtoxic concentrations, and virus-infected cells were eliminated from tumor cell lines as well as primary cell cultures. We found the HIV-tk virus to be remarkably stable even after being cultured in media containing a low concentration of GCV and then challenged with the higher dose and that while GCV resistant escape mutants did arise, a significant fraction of the virus remained sensitive to GCV.
Resumo:
Striated muscle is the predominant site of gene expression after i.m. immunization of plasmid DNA, but it is not clear if myocytes or professional antigen-presenting cells (APCs) of hematopoietic origin present the encoded antigens to class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL). To address this issue, CTL responses were assessed in mice engrafted with immune systems that were partially MHC matched with antigen-producing muscle cells. Spleen cells (sc) from immunocompetent F1 H-2bxd mice were infused into H-2b or H-2d mice carrying the severe combined immunodeficiency (scid) mutation, creating F1sc-->H-2b and F1sc-->H-2d chimeras, respectively. Immunization with DNA plasmids encoding the herpes simplex virus gB or the human immunodeficiency virus gp120 glycoproteins elicited antiviral CTL activity. F1sc-->H-2d chimeras responded to an H-2d-restricted gp120 epitope but not an H-2b restricted gB epitope, whereas F1sc-->H-2b chimeras responded to the H-2b but not the H-2d restricted epitope. This pattern of epitope recognition by the sc chimeras indicated that APCs of recipient (scid) origin were involved in initiation of CTL responses. Significantly, CTL responses against epitopes presented by the mismatched donor class I molecules were elicited if F1 bone marrow cells and sc were transferred into scid recipients before or several days to weeks after DNA immunization. Thus, bone marrow-derived APCs are sufficient for class I MHC presentation of viral antigens after i.m. immunization with plasmid DNA. Expression of plasmid DNA by these APCs is probably not a requirement for CTL priming. Instead, they appear to present proteins synthesized by other host cells.
Resumo:
The basal ganglia are known to receive inputs from widespread regions of the cerebral cortex, such as the frontal, parietal, and temporal lobes. Of these cortical areas, only the frontal lobe is thought to be the target of basal ganglia output. One of the cortical regions that is a source of input to the basal ganglia is area TE, in inferotemporal cortex. This cortical area is thought to be critically involved in the recognition and discrimination of visual objects. Using retrograde transneuronal transport of herpes simplex virus type 1, we have found that one of the output nuclei of the basal ganglia, the substantia nigra pars reticulata, projects via the thalamus to TE. Thus, TE is not only a source of input to the basal ganglia, but also is a target of basal ganglia output. This result implies that the output of the basal ganglia influences higher order aspects of visual processing. In addition, we propose that dysfunction of the basal ganglia loop with TE leads to alterations in visual perception, including visual hallucinations.
Resumo:
A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.
Resumo:
Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in development and disease. The cre-loxP system from bacteriophage P1 has been used in transgenic animals to induce site-specific DNA recombination leading to gene activation or deletion. To regulate the recombination in a spatiotemporally controlled manner, we constructed a recombinant adenoviral vector, Adv/cre, that contained the cre recombinase gene under regulation of the herpes simplex virus thymidine kinase promoter. The efficacy and target specificity of this vector in mediating loxP-dependent recombination were analyzed in mice that had been genetically engineered to contain loxP sites in their genome. After intravenous injection of the Adv/cre vector into adult animals, the liver and spleen showed the highest infectivity of the adenovirus as well as the highest levels of recombination, whereas other tissues such as kidney, lung, and heart had lower levels of infection and recombination. Only trace levels of recombination were detected in the brain. However, when the Adv/cre vector was injected directly into specific regions of the adult brain, including the cerebral cortex, hippocampus, and cerebellum, recombination was detectable at the injection site. Furthermore, when the Adv/cre vector was injected into the forebrains of neonatal mice, the rearranged toxP locus from recombination could be detected in the injected regions for at least 8 weeks. Taken together, these results demonstrate that the Adv/cre vector expressing a functional cre protein is capable of mediating loxP-dependent recombination in various tissues and the recombined gene locus may in some cases be maintained for an extended period. The use of the adenovirus vector expressing cre combined with localized delivery to specific tissues may provide an efficient means to achieve conditional gene expression or knockout with precise spatiotemporal control.
Resumo:
The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.
Resumo:
Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.
Resumo:
The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.
Resumo:
The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.
Resumo:
The delivery of viral vectors to the brain for treatment of intracerebral tumors is most commonly accomplished by stereotaxic inoculation directly into the tumor. However, the small volume of distribution by inoculation may limit the efficacy of viral therapy of large or disseminated tumors. We have investigated mechanisms to increase vector delivery to intracerebral xenografts of human LX-1 small-cell lung carcinoma tumors in the nude rat. The distribution of Escherichia coli lacZ transgene expression from primary viral infection was assessed after delivery of recombinant virus by intratumor inoculation or intracarotid infusion with or without osmotic disruption of the blood-brain barrier (BBB). These studies used replication-compromised herpes simplex virus type 1 (HSV; vector RH105) and replication-defective adenovirus (AdRSVlacZ), which represent two of the most commonly proposed viral vectors for tumor therapy. Transvascular delivery of both viruses to intracerebral tumor was demonstrated when administered intraarterially (i.a.) after osmotic BBB disruption (n = 9 for adenovirus; n = 7 for HSV), while no virus infection was apparent after i.a. administration without BBB modification (n = 8 for adenovirus; n = 4 for HSV). The thymidine kinase-negative HSV vector infected clumps of tumor cells as a result of its ability to replicate selectively in dividing cells. Osmotic BBB disruption in combination with i.a. administration of viral vectors may offer a method of global delivery to treat disseminated brain tumors.
Resumo:
Transcriptional stimulation by the model activator GAL4-VP16 (a chimeric protein consisting of the DNA-binding domain of the yeast activator GAL4 and the acidic activation domain of the herpes simplex virus protein VP16) involves a series of poorly understood protein-protein interactions between the VP16 activation domain and components of the RNA polymerase II general transcription machinery. One of these interactions is the VP16-mediated binding and recruitment of transcription factor TFIIB. However, TATA box-binding protein (TBP)-associated factors (TAFs), or coactivators, are required for this interaction to culminate in productive transcription complex assembly, and one such TAF, Drosophila TAF40, reportedly forms a ternary complex with VP16 and TFIIB. Due to TFIIB's central role in gene activation, we sought to directly visualize the surfaces of this protein that mediate formation of the ternary complex. We developed an approach called protease footprinting in which the broad-specificity proteases chymotrypsin and alkaline protease were used to probe binding of 32P-end-labeled TFIIB to GAL4-VP16 or TAF40. Analysis of the cleavage products revealed two regions of TFIIB protected by VP16 from protease attack, one of which overlapped with a region protected by TAF40. The close proximity of the VP16 and TAF40 binding sites on the surface of TFIIB suggests that this region could act as a regulatory interface mediating the effects of activators and coactivators on transcription complex assembly.
Resumo:
Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.
Resumo:
The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.
Resumo:
There have been many studies pertaining to the management of herpetic meningoencephalitis (HME), but the majority of them have focussed on virologically unconfirmed cases or included only small sample sizes. We have conducted a multicentre study aimed at providing management strategies for HME. Overall, 501 adult patients with PCR-proven HME were included retrospectively from 35 referral centres in 10 countries; 496 patients were found to be eligible for the analysis. Cerebrospinal fluid (CSF) analysis using a PCR assay yielded herpes simplex virus (HSV)-1 DNA in 351 patients (70.8%), HSV-2 DNA in 83 patients (16.7%) and undefined HSV DNA type in 62 patients (12.5%). A total of 379 patients (76.4%) had at least one of the specified characteristics of encephalitis, and we placed these patients into the encephalitis presentation group. The remaining 117 patients (23.6%) had none of these findings, and these patients were placed in the nonencephalitis presentation group. Abnormalities suggestive of encephalitis were detected in magnetic resonance imaging (MRI) in 83.9% of the patients and in electroencephalography (EEG) in 91.0% of patients in the encephalitis presentation group. In the nonencephalitis presentation group, MRI and EEG data were suggestive of encephalitis in 33.3 and 61.9% of patients, respectively. However, the concomitant use of MRI and EEG indicated encephalitis in 96.3 and 87.5% of the cases with and without encephalitic clinical presentation, respectively. Considering the subtle nature of HME, CSF HSV PCR, EEG and MRI data should be collected for all patients with a central nervous system infection.