880 resultados para Heat Illness Index Score
Resumo:
Natural convection flow from an isothermal vertical plate with uniform heat source embedded in a stratified medium has been discussed in this paper. The resulting momentum and energy equations of boundary layer approximation are made non-similar by introducing the usual non-similarity transformations. Numerical solutions of these equations are obtained by an implicit finite difference method for a wide range of the stratification parameter, X. The solutions are also obtained for different values of pertinent parameters, namely, the Prandtl number, Pr and the heat generation or absorption parameter, λ and are expressed in terms of the local skin-friction and local heat transfer, which are shown in the graphical form. Effect of heat generation or absorption on the streamlines and isotherms are also shown graphically for different values of λ.
Resumo:
A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including a start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a new Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
According to the diagnosis of schizophrenia in the DSM-IV-TR (American Psychiatric Association, 2000), negative symptoms are those personal characteristics that are thought to be reduced from normal functioning, while positive symptoms are aspects of functioning that exist as an excess or distortion of normal functioning. Negative symptoms are generally considered to be a core feature of people diagnosed with schizophrenia. However, negative symptoms are not always present in those diagnosed, and a diagnosis can be made with only negative or only positive symptoms, or with a combination of both. Negative symptoms include an observed loss of emotional expression (affective flattening), loss of motivation or self directedness (avolition), loss of speech (alogia), and also a loss of interests and pleasures (anhedonia). Positive symptoms include the perception of things that others do not perceive (hallucinations), and extraordinary explanations for ordinary events (delusions) (American Psychiatric Association, 2000). Both negative and positive symptoms are derived from watching the patient and thus do not consider the patient’s subjective experience. However, aspects of negative symptoms, such as observed affective flattening are highly contended. Within conventional psychiatry, the absence of emotional expression is assumed to coincide with an absence of emotional experience. Contrasting research findings suggests that patients who were observed to score low on displayed emotional expression, scored high on self ratings of emotional experience. Patients were also observed to be significantly lower on emotional expression when compared with others (Aghevli, Blanchard, & Horan, 2003; Selton, van der Bosch, & Sijben, 1998). It appears that there is little correlation between emotional experience and emotional expression in patients, and that observer ratings cannot help us to understand the subjective experience of the negative symptoms. This chapter will focus on research into the subjective experiences of negative symptoms. A framework for these experiences will be used from the qualitative research findings of the primary author (Le Lievre, 2010). In this study, the primary author found that subjective experiences of the negative symptoms belonged to one of the two phases of the illness experience; “transitioning into emotional shutdown” or “recovering from emotional shutdown”. This chapter will use the six themes from the phase of “transitioning into emotional shutdown”. This phase described the experience of turning the focus of attention away from the world and onto the self and the past, thus losing contact with the world and others (emotional shutdown). Transitioning into emotional shutdown involved; “not being acknowledged”, “relational confusion”, “not being expressive”, “reliving the past”, “detachment”, and “no sense of direction” (Le Lievre, 2010). Detail will be added to this framework of experience from other qualitative research in this area. We will now review the six themes that constitute a “transition into emotional shutdown” and corresponding previous research findings.
Resumo:
Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.
Resumo:
Unsteady natural convection due to differentially heating of the sinusoidal corrugated side walls of a modified square enclosure has been numerically investigated. The fluid inside the enclosure is air, initially as quiescent. The flat top and bottom surfaces are considered as adiabatic. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results are obtained for the Rayleigh number, Ra ranging from 1e+05 to 1e+08 for different corrugation amplitude and frequency with constant physical properties for the fluid medium considered. The streamlines, isotherms and average Nusselt numbers are presented to observe the effect of sudden heating and its consequent transient behavior on fluid flow and heat transfer characteristics for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the aforementioned parameters.
Resumo:
Objective: Parental illness (PI) may have adverse impacts on youth and family functioning. Research in this area has suffered from the absence of a guiding comprehensive framework. This study tested a conceptual model of the effects of PI on youth and family functioning derived from the Family Ecology Framework (FEF; Pedersen & Revenson, 2005). Method. A total of 85 parents with multiple sclerosis and 127 youth completed questionnaires at Time 1 and 12 months later at Time 2. Results. Structural equation modeling results supported the FEF with regards to physical-illness disability. Specifically, the proposed mediators (role redistribution, stress, and stigma) were implicated in the processes that link parental disability to several domains of youth adjustment. The results suggest that the effects of parental depression (PD) are not mediated through these processes; rather, PD directly affects family functioning, which in turn mediates the effects onto youth adjustment. Family functioning further mediated between PD and youth well-being and behavioral-social difficulties. Conclusions. Although results support the effects of parental-illness disability on youth and family functioning via the proposed mediational mechanisms, the additive effects of PD on youth physical and mental health occur through direct and indirect (via family functioning) pathways, respectively.
Resumo:
Purpose - Thermo-magnetic convection and heat transfer of paramagnetic fluid placed in a micro-gravity condition (g = 0) and under a uniform vertical gradient magnetic field in an open square cavity with three cold sidewalls have been studied numerically. Design/methodology/approach - This magnetic force is proportional to the magnetic susceptibility and the gradient of the square of the magnetic induction. The magnetic susceptibility is inversely proportional to the absolute temperature based on Curie’s law. Thermal convection of a paramagnetic fluid can therefore take place even in zero-gravity environment as a direct consequence of temperature differences occurring within the fluid due to a constant internal heat generation placed within a magnetic field gradient. Findings - Effects of magnetic Rayleigh number, Ra, Prandtl number, Pr, and paramagnetic fluid parameter, m, on the flow pattern and isotherms as well as on the heat absorption are presented graphically. It is found that the heat transfer rate is suppressed in increased of the magnetic Rayleigh number and the paramagnetic fluid parameter for the present investigation. Originality/value - It is possible to control the buoyancy force by using the super conducting magnet. To the best knowledge of the author no literature related to magnetic convection for this configuration is available.
Resumo:
We report on analysis of discussions in an online community of people with chronic illness using socio-cognitively motivated, automatically produced semantic spaces. The analysis aims to further the emerging theory of "transition" (how people can learn to incorporate the consequences of illness into their lives). An automatically derived representation of sense of self for individuals is created in the semantic space by the analysis of the email utterances of the community members. The movement over time of the sense of self is visualised, via projection, with respect to axes of "ordinariness" and "extra-ordinariness". Qualitative evaluation shows that the visualisation is paralleled by the transitions of people during the course of their illness. The research aims to progress tools for analysis of textual data to promote greater use of tacit knowledge as found in online virtual communities. We hope it also encourages further interest in representation of sense-of-self.
Resumo:
An improved scaling analysis and direct numerical simulations are performed for the unsteady natural convection boundary layer adjacent to a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages: a start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as the numerical results. Previous scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings perform very well with Rayleigh number and aspect ratio dependency. In this study, a modified Prandtl number scaling is developed using a triple layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the modified scaling performs considerably better than the previous scaling.
Resumo:
Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. The Cardiac ARIA project, with its extensive use of geographic Information Systems (GIS), ranks each of Australia’s 20,387 urban, rural and remote population centres by accessibility to essential services or resources for the management of a cardiac event. This unique, innovative and highly collaborative project delivers a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia. Cardiac ARIA is innovative. It is a model that could be applied internationally and to other acute and chronic conditions such as mental health, midwifery, cancer, respiratory, diabetes and burns services. Cardiac ARIA was designed to: 1. Determine by expert panel, what were the minimal services and resources required for the management of a cardiac event in any urban, rural or remote population locations in Australia using a single patient pathway to access care. 2. Derive a classification using GIS accessibility modelling for each of Australia’s 20,387 urban, rural and remote population locations. 3. Compare the Cardiac ARIA categories and population locations with census derived population characteristics. Key findings are as follows: • In the event of a cardiac emergency, the majority of Australians had very good access to cardiac services. Approximately 71% or 13.9 million people lived within one hour of a category one hospital. • 68% of older Australians lived within one hour of a category one hospital (Principal Referral Hospital with access to Cardiac Catheterisation). • Only 40% of indigenous people lived within one hour of the category one hospital. • 16% (74000) of indigenous people lived more than one hour from a hospital. • 3% (91,000) of people 65 years of age or older lived more than one hour from any hospital or clinic. • Approximately 96%, or 19 million, of people lived within one hour of the four key services to support cardiac rehabilitation and secondary prevention. • 75% of indigenous people lived within one hour of the four cardiac rehabilitation services to support cardiac rehabilitation and secondary prevention. Fourteen percent (64,000 persons) indigenous people had poor access to the four key services to support cardiac rehabilitation and secondary prevention. • 12% (56,000) of indigenous people were more than one hour from a hospital and only had access one the four key services (usually a medical service) to support cardiac rehabilitation and secondary prevention.
Resumo:
Purpose: James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some fifty years earlier Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young’s contributions. Method: We attempted to derive Young’s equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. Results: We did not confirm Young’s equation for the axial gradient to provide aberration-free optics, but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index towards the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Conclusion: Young’s theoretical work in gradient-index optics received no acknowledgement from either his contemporaries or later authors. While his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young’s work deserves wider recognition.