947 resultados para Heart and kidney adaptations
Resumo:
Cell cycle regulatory molecules are implicated in cardiomyocyte hypertrophy. We have investigated protein expression of cyclins A, D1–3, and E and cyclin-dependent kinases (CDKs) 2, 4, 5, and 6 in left ventricular (LV) tissues during the development of LV hypertrophy in rats following aortic constriction (AC). Compared with their expression in sham-operated controls (SH), expression of cyclins D2 and D3 and of CDK4 and CDK6 increased significantly fromday 3 to day 21 after AC concomitant with increased LV mass. However, no significant difference was observed for CDK2 or CDK5. Cyclins A, D1, and E were undetectable. In vitro kinase activities of CDK4 and CDK6 increased ∼70% from day 7 to day 14 in AC myocytes compared with SH myocytes (P< 0.03). Fluorescence-activated cell sorter analysis revealed a G0/G1to G2/M phase progression in AC myocyte nuclei (22.0 ± 1.1% in G2/M) by day 7 postoperation compared with progression in SH myocyte nuclei (14.0 ± 0.8% in G2/M;P < 0.01). Thus an upregulation of certain cell cycle regulators is associated with cardiomyocyte hypertrophy.
Resumo:
We postulated that the cyclin-dependent kinase inhibitors p21 and p27 could regulate the alterations in growth potential of cardiomyocytes during left ventricular hypertrophy (LVH). LVH was induced in adult rat hearts by aortic constriction (AC) and was monitored at days 0, 1, 3, 7, 14, 21, and 42 postoperation. Relative to sham-operated controls (SH), left ventricle (LV) weight-to-body weight ratio in AC increased progressively with time without significant differences in body weight or right ventricle weight-to-body weight ratio. Atrial natriuretic factor mRNA increased significantly in AC to 287% at day 42 compared with SH (P < 0.05), whereas p21 and p27 mRNA expression in AC rats decreased significantly by 58% (P < 0.03) and 40% (P < 0.05) at day 7, respectively. p21 and p27 protein expression decreased significantly from days 3 to 21 in AC versus SH, concomitant with LV adaptive growth. Immunocytochemistry showed p21 and p27 expression in cardiomyocyte nuclei. Thus downregulation of p21 and p27 may modulate the adaptive growth of cardiomyocytes during pressure overload-induced LVH.
Resumo:
Although linguistic diversity has always been a defining feature of the British Isles, it has assumed new proportions in recent years, a period during which the transnational flow of people has been accompanied by a corresponding flow of languages. This paper charts the changing nature of diversity and the adaptations to which it has given rise on the part of both the host community and speakers of minority languages.
Resumo:
Occupants’ behaviour when improving the indoor environment plays a significant role in saving energy in buildings. Therefore the key step to reducing energy consumption and carbon emissions from buildings is to understand how occupants interact with the environment they are exposed to in terms of achieving thermal comfort and well-being; though such interaction is complex. This paper presents a dynamic process of occupant behaviours involving technological, personal and psychological adaptations in response to varied thermal conditions based on the data covering four seasons gathered from the field study in Chongqing, China. It demonstrates that occupants are active players in environmental control and their adaptive responses are driven strongly by ambient thermal stimuli and vary from season to season and from time to time, even on the same day. Positive, dynamic, behavioural adaptation will help save energy used in heating and cooling buildings. However, when environmental parameters cannot fully satisfy occupants’ requirements, negative behaviours could conflict with energy saving. The survey revealed that about 23% of windows are partly open for fresh air when air-conditioners are in operation in summer. This paper addresses the issues how the building and environmental systems should be designed, operated and managed in a way that meets the requirements of energy efficiency without compromising wellbeing and productivity.
Resumo:
This paper fully describes a nation-wide field study on building thermal environment and thermal comfort of occupant, which was carried out in summer 2005 and in winter 2006 respectively in China, illustrating the adaptive strategies adopted by occupants in domestic buildings in China. According to the climate division in China, the buildings in Beijing (BJ), Shanghai (SH), Wuhan (WH) and Chongqing (CQ), Guangzhou (GZ), Kunming (KM), were selected as targets which are corresponding to cold zone, hot summer and cold winter zone (SWC-SH, WH, CQ), hot summer and warm winter zone and temperate zone, respectively. The methodology used in the field study is the combination of subjective questionnaire regarding thermal sensation and adaptive approaches and physical environmental monitoring including indoor air temperature and relative humidity. A total of 1671 subjects participate in this investigation with more than 80% response rate in all surveyed cities. Both physiological and non-physiological factors (behavioural and psychological adaptations) have been analysed.
Resumo:
Murine transgenesis using cardioselective promoters has become increasingly common in studies of cardiac hypertrophy and heart failure, with expression mediated by pronuclear microinjection being the commonest format. Without wishing to decry their usefulness, in our view, such studies are not necessarily as unambiguous as sometimes portrayed and clarity is not always their consequence. We describe broadly the types of approach undertaken in the heart and point out some of the drawbacks. We provide three arbitrarily-chosen examples where, in spite of a number of often-independent studies, no consensus has yet been achieved. These include glycogen synthase kinase 3, the extracellular signal-regulated kinase pathway and the ryanodine receptor 2. We believe that the transgenic approach should not be viewed in an empyreal light and, depending on the questions asked, we suggest that other experimental systems provide equal (or even more) valuable outcomes.
Resumo:
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signalling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors which convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain, 1Hz for 48 hours to mimic in vivo mechanical stress. Cells were also treated with and without L-NAME, a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres which was rescued by LNAME (P<0.05, n≥5 cultures). We hypothesized that the mechanism was through NOinduced alteration of myocyte gene expression. L-NAME up-regulated the mechanosensing proteins Muscle LIM protein (MLP (by 100%, p<0.05, n=4 cultures)) and lipoma preferred partner, a novel cardiac protein (LPP (by 80%, p<0.05, n=4 cultures)). L-NAME also significantly altered the subcellular localisation of LPP and MLP in a manner that favoured growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between iNOS and nNOS isoforms regulate gene expression. LPP knockdown by siRNA led to formation of α-actinin aggregates and Z-bodies showing that myofibrillogenesis was impaired. There was an up-regulation of E3 ubiquitin ligase (MUL1) by 75% (P<0.05, n=5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure. Keywords: Mechanotransduction, heart failure, stretch, heart, hypertrophy
Resumo:
Potassium and phosphorus are important macronutrients for crops but are often deficient in the field. Very little is known about how plants sense fluctuations in K and P and how information about K and P availability is integrated at the whole plant level into physiological and metabolic adaptations. This chapter reviews recent advances in discovering molecular responses of plants to K and P deficiency by microarray experiments. These studies provide us not only with a comprehensive picture of adaptive mechanisms, but also with a large number of transcriptional markers that can be used to identify upstream components of K and P signalling pathways. On the basis of the available information we discuss putative receptors and signals involved in the sensing and integration of K and P status both at the cellular and at the whole plant level. These involve membrane potential, voltage-dependent ion channels, intracellular Ca and pH, and transcription factors, as well as hormones and metabolites for systemic signalling. Genetic screens of reporter lines for transcriptional markers and metabolome analysis of K- and P-deficient plants are likely to further advance our knowledge in this area in the near future.
Resumo:
The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fail to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. Straight chain analogs of di-2-ethylhexyl phthalate, di-n-hexyl phthalate and di-n-oxtyl phthalate differ entirely in their short-term effects on the liver and kidney but have similar effects on the thyroid. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. The nature of these changes is such as to increase storage of lipid in the liver. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors.
Resumo:
BACKGROUND: Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
Resumo:
Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out
Resumo:
Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) detected >400 protein kinase mRNAs in rat neonatal ventricular myocytes (NVMs) and/or adult ventricular myocytes (AVMs), 32 and 93 of which were significantly upregulated or downregulated (>2-fold), respectively, in AVMs. Data for AGC family members were validated by qPCR. Proteomics analysis identified >180 cardiomyocyte protein kinases, with high relative expression of mitogen-activated protein kinase cascades and other known cardiomyocyte kinases (e.g. CAMKs, cAMP-dependent protein kinase). Other kinases are poorly-investigated (e.g. Slk, Stk24, Oxsr1). Expression of Akt1/2/3, BRaf, ERK1/2, Map2k1, Map3k8, Map4k4, MST1/3, p38-MAPK, PKCδ, Pkn2, Ripk1/2, Tnni3k and Zak was confirmed by immunoblotting. Relative to total protein, Map3k8 and Tnni3k were upregulated in AVMs vs NVMs. Microarray data for human hearts demonstrated variation in kinome expression that may influence responses to kinase inhibitor therapies. Furthermore, some kinases were upregulated (e.g. NRK, JAK2, STK38L) or downregulated (e.g. MAP2K1, IRAK1, STK40) in human failing hearts. Conclusions. This characterization of the spectrum of kinases expressed in cardiomyocytes and the heart (cardiomyocyte and cardiac kinomes) identified novel kinases, some of which are differentially expressed in failing human hearts and could serve as potential therapeutic targets.
Resumo:
"Stress-regulated" mitogen-activated protein kinases (SR-MAPKs) comprise the stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. In the perfused heart, ischemia/reperfusion activates SR-MAPKs. Although the agent(s) directly responsible is unclear, reactive oxygen species are generated during ischemia/reperfusion. We have assessed the ability of oxidative stress (as exemplified by H2O2) to activate SR-MAPKs in the perfused heart and compared it with the effect of ischemia/reperfusion. H2O2 activated both SAPKs/JNKs and p38-MAPK. Maximal activation by H2O2 in both cases was observed at 0.5 mM. Whereas activation of p38-MAPK by H2O2 was comparable to that of ischemia and ischemia/reperfusion, activation of the SAPKs/JNKs was less than that of ischemia/reperfusion. As with ischemia/reperfusion, there was minimal activation of the ERK MAPK subfamily by H2O2. MAPK-activated protein kinase 2 (MAPKAPK2), a downstream substrate of p38-MAPKs, was activated by H2O2 to a similar extent as with ischemia or ischemia/reperfusion. In all instances, activation of MAPKAPK2 in perfused hearts was inhibited by SB203580, an inhibitor of p38-MAPKs. Perfusion of hearts at high aortic pressure (20 kilopascals) also activated the SR-MAPKs and MAPKAPK2. Free radical trapping agents (dimethyl sulfoxide and N-t-butyl-alpha-phenyl nitrone) inhibited the activation of SR-MAPKs and MAPKAPK2 by ischemia/reperfusion. These data are consistent with a role for reactive oxygen species in the activation of SR-MAPKs during ischemia/reperfusion.
Resumo:
It is becoming apparent that anti-cancer chemotherapies are increasingly associated with cardiac dysfunction or even congestive heart failure (Minotti et al., 2004; Eliott, 2006; Suter et al., 2004; Ren, 2005). Our data suggest that one of the contributing factors to the cardiotoxicitiy of these drugs may be the activation of the AhR-response (including the increased expression of Cyp1a1) and/or other detoxification program in cardiac myocytes themselves. The induction of such responses may have secondary effects (e.g. to increase the level of intracellular oxidative stress), which may influence the contractility or even survival of cardiac myocytes. Furthermore, the specific response of cardiac myocytes, both with respect to the metabolizing enzymes and the export channels, potentially differs from other cells (e.g. we failed to detect any increase in expression of other “classical” AhR-responsive genes, Ugt1a1 and Ugt1a6). This could account for, for example, the observation that doxoribicinol (the 13-hydroxy form of doxorubicin) accumulates in cardiac myocytes but not in hepatocytes (Del Tacca et al., 1985; Olson et al., 1988). Given the vulnerability of the heart and the almost irreparable damage that can be done by severe oxidative stress, further studies would seem to be merited specifically on the effects of chemotherapeutic agents on cardiac myocytes.