943 resultados para Hafnium oxides
Resumo:
The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness
Resumo:
The Pseudomonas aeruginosa gene anr, which encodes a structural and functional analog of the anaerobic regulator Fnr in Escherichia coli, was mapped to the SpeI fragment R, which is at about 59 min on the genomic map of P. aeruginosa PAO1. Wild-type P. aeruginosa PAO1 grew under anaerobic conditions with nitrate, nitrite, and nitrous oxide as alternative electron acceptors. An anr deletion mutant, PAO6261, was constructed. It was unable to grow with these alternative electron acceptors; however, its ability to denitrify was restored upon the introduction of the wild-type anr gene. In addition, the activities of two enzymes in the denitrification pathway, nitrite reductase and nitric oxide reductase, were not detectable under oxygen-limiting conditions in strain PAO6261 but were restored when complemented with the anr+ gene. These results indicate that the anr gene product plays a key role in anaerobically activating the entire denitrification pathway.
Resumo:
A Knudsen flow reactor has been used to quantify functional groups on the surface of seven different types of combustion particle samples: 3 amorphous carbons (FS 101, Printex 60, FW 2), 2 flame soots (hexane soot generated from a rich and a lean diffusion flame), and 2 Diesel particles (SRM 2975, Diesel soot recovered from a Diesel particulate filter). The technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for carbonyl functions of aldehydes and ketones, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. Results obtained with N(CH3)3 were higher for the FW 2 amorphous carbon (post-oxidized sample, according to the manufacturer) and the Diesel particles (between 5.2·10 13 and 5.8·10 13 molecule/cm2), indicating a higher state of oxidation than for the other samples (between 1.3·10 12 and 3.7·10 12 molecule/cm2). The ratio of uptakes of CF3COOH and HCl inferred the presence of basic oxides on the particle surface, owing to the larger stability of the acetate compared to the chloride counter ion in the resulting pyrylium salt. The reactivity of the FS 101 amorphous carbon (3.7·10 15 molecule/cm2) and the hexane flame soot (between 1.9·10 15 and 2.7·10 15 molecule/cm2) towards O3 was very high, indicating the presence of a huge amount of oxidizable or reduced groups on the surface of these samples. Besides the quantification of surface functional groups, the kinetics of reactions between particles and probe gases has also been studied. The uptake coefficient γ0 was roughly correlated with the amount of probe gas taken up by the samples. Indeed, the presence of a high density of functional groups led to fast uptake of the probe gas. These different findings indicate that the particle surface appeared multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also point to important differences in the surface reactivity of the samples, depending on the combustion conditions. The relative distribution of the surface functional groups may be a useful indicator for the state of oxidation and the reactivity of the particle surface.
Resumo:
Prevention of acid mine drainage (AMD) in sulfide-containing tailings requires the identification of the geochemical processes and element pathways in the early stages of tailing deposition. However, analyses of recently deposited tailings in active tailings impoundments are scarce because mineralogical changes occur near the detection limits of many assays. This study shows that a detailed geochemical study which includes stable isotopes of water (delta H-2, delta O-18), dissolved sulfates (delta S-34, delta O-18) and hydrochernical parameter (pH, Eh, DOC, major and trace elements) from tailings samples taken at different depths in rainy and dry seasons allows the understanding of weathering (oxidation, dissolution, sorption, and desorption), water and element pathways, and mixing processes in active tailings impoundments. Fresh alkaline tailings (pH 9.2-10.2) from the Cu-Mo porphyry deposit in El Teniente, Chile had low carbonate (0.8-1.1 Wt-% CaCO3 equivalent) and sulfide concentrations (0.8-1.3 wt.%, mainly as pyrite). In the alkaline tailings water, Mo and Cu (up to 3.9 mg/L Mo and 0.016 mg/L Cu) were mobile as MoO42- and Cu (OH)(2)(0). During the flotation, tailings water reached equilibrium with gypsum (up to 738 mg/L Ca and 1765 mg/ L SO4). The delta S-34 VS. delta O-18 covariations of dissolved sulfate (2.3 to 4.5% delta S-34 and 4.1 to 6.0 % delta O-18) revealed the sulfate sources: the dissolution of primary sulfates (12.0 to 13.2%. delta S-34, 7.4 to 10.9%.delta O-18) and oxidation of primary sulfides (-6.7 to 1.7%. delta S-34). Sedimented tailings in the tailings impoundment can be divided into three layers with different water sources, element pathways, and geochemical processes. The deeper sediments (> 1 m depth) were infiltrated by catchment water, which partly replaced the original tailings water, especially during the winter season. This may have resulted in the change from alkaline to near-neutral pH and towards lower concentrations of most dissolved elements. The neutral pH and high DOC (up to 99.4 mg/L C) of the catchment water mobilized Cu (up to 0.25 mg/L) due to formation of organic Cu complexes; and Zn (up to 130 mg/L) due to dissolution of Zn oxides and desorption). At I m depth, tailings pore water obtained during the winter season was chemically and isotopically similar to fresh tailings water (pH 9.8-10.6, 26.7-35.5 mg/L Cl, 2.3-6.0 mg/L Mo). During the summer, a vadose zone evolved locally and temporarily up to 1.2 m depth. resulting in a higher concentration of dissolved solids in the pore water due to evaporation. During periodical new deposition of fresh tailings, the geochemistry of the surface layer was geochemically similar to fresh tailings. In periods without deposition, sulfide oxidation was suggested by decreasing pH (7.7-9.5), enrichment of MoO42- and SO42-, and changes in the isotopic composition of dissolved sulfates. Further enrichment for Na, K, Cl, SO4, Mg, Cu, and Mo (up to 23.8 mg/L Mo) resulted from capillary transport towards the surface followed by evaporation and the precipitation of highly soluble efflorescent salts (e.g., mirabilite, syngenite) at the tailing surface during summer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To investigate the utility of inversion recovery with ON-resonant water suppression (IRON) to create positive signal in normal lymph nodes after injection of superparamagnetic nanoparticles. MATERIALS AND METHODS: Experiments were conducted on six rabbits, which received a single bolus injection of 80 mumol Fe/kg monocrystalline iron oxide nanoparticle (MION-47). Magnetic resonance imaging (MRI) was performed at baseline, 1 day, and 3 days after MION-47 injection using conventional T(1)- and T(2)*-weighted sequences and IRON. Contrast-to-noise ratios (CNR) were measured in blood and in paraaortic lymph nodes. RESULTS: On T(2)*-weighted images, as expected, signal attenuation was observed in areas of paraaortic lymph nodes after MION-47 injection. However, using IRON the paraaortic lymph nodes exhibited very high contrast enhancement, which remained 3 days after injection. CNR with IRON was 2.2 +/- 0.8 at baseline, increased markedly 1 day after injection (23.5 +/- 5.4, P < 0.01 vs. baseline), and remained high after 3 days (21.8 +/- 5.7, *P < 0.01 vs. baseline). CNR was also high in blood 1 day after injection (42.7 +/- 7.2 vs. 1.8 +/- 0.7 at baseline, P < 0.01) but approached baseline after 3 days (1.9 +/- 1.4, P = NS vs. baseline). CONCLUSION: IRON in conjunction with superparamagnetic nanoparticles can be used to perform 'positive contrast' MR-lymphography, particularly 3 days after injection of the contrast agent, when signal is no longer visible within blood vessels. The proposed method may have potential as an adjunct for nodal staging in cancer screening.
Resumo:
The industrial refining of kaolin involves the removal of iron oxides and hydroxides along with other impurities that cause discoloration of the final product and depreciate its commercial value, particularly undesirable if destined to the paper industry. The chemical leaching in the industrial processing requires treatments with sodium hyposulfite, metallic zinc, or sulfuric and phosphoric acids, in order to reduce, dissolve and remove ferruginous compounds. To mitigate the environmental impact, the acidic effluent from the leaching process must be neutralized, usually with calcium oxide. The resulting solid residue contains phosphorous, zinc, and calcium, among other essential nutrients for plant growth, suggesting its use as a macro and micronutrient source. Samples of such a solid industrial residue were used here to evaluate their potential as soil fertilizer in an incubation greenhouse experiment with two soil samples (clayey and medium-textured). The small pH shift generated by applying the residue to the soil was not a limiting factor for its use in agriculture. The evolution of the concentrations of exchangeable calcium, and phosphorous and zinc extractability by Mehlich-1 extractant during the incubation period confirms the potential use of this industrial residue as agricultural fertilizer.
Resumo:
Maghemite (g-Fe2O3) is the most usually found ferrimagnetic oxide in red basalt-derived soils. The variable degrees of ionic substitution of Fe3+ for different metals (e.g. Ti4+, Al3+, Mg2+, Zn2+, and Mn2+) and non-metals in the maghemite structure influence some cristallochemical features of this iron oxide. In this study, synthetic Zn-substituted maghemites were prepared by co-precipitation in alkaline aqueous media of FeSO4.7H2O with increasing amounts of ZnSO4.7H2O to obtain the following sequence of Fe3+ for Zn2+ substitutions: 0.0, 0.025, 0.05, 0.10, 0.15, 0.20, and 0.30 mol mol-1. The objective of this work was to evaluate the cristallochemical alterations of synthetic Zn-substituted maghemites. The dark black synthetic precipitated material was heated to 250 °C during 4 h forming a brownish maghemite that was characterized by chemical analysis as well as X ray diffraction (XRD), specific surface area and mass-specific magnetic susceptibility. The isomorphic substitution levels observed were of 0.0013, 0.0297, 0.0590, 0.1145, 0.1764, 0.2292 and 0.3404 mol mol-1, with the formation of a series of maghemites from Fe2Zn0O3 to Fe(1.49)Zn(0.770)O3 . The increase in Fe3+ for Zn2+ substitution, [Zn mol mol-1] increased the dimension a0 of the cubic unit cells of the studied maghemites according to the regression equation: a0 = 0.8343 + 0.02591Zn (R² = 0.98). On the other hand, the mean crystallite dimension and mass-specific magnetic susceptibility of the studied maghemites decreased with increasing isomorphic substitution.
Resumo:
We report here on the magnetic properties of ZnO:Mn- and ZnO:Co-doped nanoparticles. We have found that the ferromagnetism of ZnO:Mn can be switched on and off by consecutive low-temperature annealings in O2 and N2, respectively, while the opposite phenomenology was observed for ZnO:Co. These results suggest that different defects (presumably n-type for ZnO:Co and p-type for ZnO:Mn) are required to induce a ferromagnetic coupling in each case. We will argue that ferromagnetism is likely to be restricted to a very thin, nanometric layer at the grain surface. These findings reveal and give insight into the dramatic relevance of surface effects to the occurrence of ferromagnetism in ZnO-doped oxides.
Resumo:
Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.
Resumo:
Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6?8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.
Resumo:
The oxidation of GaAs and AlGaAs targets subjected to O2+ bombardment has been analyzed, using in situ x¿ray photoelectron spectroscopy, as a function of time until steady state is reached. The oxides formed by the O2+ bombardment have been characterized in terms of composition and binding energy. A strong energy and angular dependence for the oxidation of As relative to Ga is found. Low energies as well as near normal angles of incidence favor the oxidation of As. The difference between Ga and As can be explained in terms of the formation enthalpy for the oxide and the excess supply of oxygen. In an AlGaAs target the Al is very quickly completely oxidized irrespective of the experimental conditions. The steady state composition of the altered layers show in all cases a preferential removal of As.
Resumo:
The changes undergone by the Si surface after oxygen bombardment have special interest for acquiring a good understanding of the Si+-ion emission during secondary ion mass spectrometry (SIMS) analysis. For this reason a detailed investigation on the stoichiometry of the builtup surface oxides has been carried out using in situ x-ray photoemission spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates a strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30°. In this work a special emphasis on the analysis and interpretation of the valence band region was made. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the respective valence band structures also differ. A comparison with experimentally measured and theoretically derived Si valence band and SiO2 valence band suggests that the new valence bands are formed by a combination of these two. This arises from the fact that Si¿Si bonds are present on the Si¿suboxide molecules, and therefore the corresponding 3p-3p Si-like subband, which extends towards the Si Fermi level, forms the top of the respective new valence bands. Small variations in intensity and energy position for this subband have drastic implications on the intensity of the Si+-ion emission during sputtering in SIMS measurements. A model combining chemically enhanced emission and resonant tunneling effects is suggested for the variations observed in ion emission during O+2 bombardment for Si targets.
Resumo:
We report here on the growth of NiFe2O4 epitaxial thin films of different thickness (3 nm ¿ t ¿ 32 nm) on single crystalline substrates having spinel (MgAl2O4) or perovskite (SrTiO3) structure. Ultrathin films, grown on any of those substrates, display a huge enhancement of the saturation magnetization: we will show that partial cationic inversion may account for this enhancement, although we will argue that suppression of antiparallel collinear spin alignment due to size-effects cannot be excluded. Besides, for thicker films, the magnetization of films on MAO is found to be similar to that of bulk ferrite; in contrast, the magnetization of films on STO is substantially lower than bulk. We discuss on the possible mechanisms leading to this remarkable difference of magnetization.
Resumo:
Epitaxial films of the biferroic YMnO3 (YMO) oxide have been grown on platinum-coated SrTiO3(1 1 1) and Al2O3(0 0 0 1) substrates. The platinum electrodes, (1 1 1) oriented, are templates for the epitaxy of the hexagonal phase of YMO with a (0 0 0 1) out-of-plane orientation, which is of interest as this is the polarization direction of YMO. X-ray diffractometry indicates the presence of two crystal domains, 60° rotated in-plane, in the Pt(1 1 1) layers which subsequently are transferred on the upperlaying YMO. Cross-section analysis by high-resolution transmission electron microscopy (HRTEM) of YMnO3/Pt/SrTiO3(1 1 1) shows high-quality epitaxy and sharp interfaces across the structure in the observed region. We present a detailed study of the epitaxial growth of the hexagonal YMO on the electrodes.
Resumo:
Ammonia gas detection by pure and catalytically modified WO3 based gas sensor was analysed. The sensor response of pure WO3 to NH3 was not only rather low but also presented an abnormal behaviour, probably due to the unselective oxidation of ammonia to NOx. Copper and vanadium were introduced in different concentrations and the resulting material was annealed at different temperatures in order to improve the sensing properties for NH3 detection. The introduction of copper and vanadium as catalytic additives improved the response to NH3 and also eliminated the abnormal behaviour. Possible mechanisms of NH3 reaction over these materials are discussed. Sensor responses to other gases like NO2 or CO and the interference of humidity on ammonia detection were also analysed so as to choose the best sensing element.