938 resultados para HAACK REACTIONS
Resumo:
Multistep surface processes involving a number of association reactions and desorption processes may be considered as hypothetical one-step desorption processes. Thus, heterogeneous catalytic reactions can be treated kinetically as consisting of two steps: adsorption and desorption. It is also illustrated that the hypothetical one-step desorption process follows the BEP relation. A volcano curve can be obtained from kinetic analysis by including both adsorption and desorption processes.
Resumo:
Ammonia synthesis on three metal surfaces (Zr, Ru, and Pd) is investigated using density functional theory calculations. In addition to N-2 dissociation, all the transition states of the hydrogenation reactions from N to NH3 are located and the reaction energy profiles at both low and high surface coverages are compared and analyzed. The following are found: (i) Surface coverage effect on dissociation reactions is more significant than that on association reactions. (ii) The difference between N and H chemisorption energies, the so-called chemisorption energy gap which is a measure of adsorption competition, is vital to the reactivity of the catalysts. (iii) The hydrogenation barriers can considerably affect the overall rate of ammonia synthesis. A simple model to describe the relationship between dissociation and association reactions is proposed. (c) 2007 American Institute of Physics.
Resumo:
Transition metal catalyzed bond formation is a fundamental process in catalysis and is of general interest throughout chemistry. To date, however, the knowledge of association reactions is rather limited, relative to what is known about dissociative processes. For example, surprisingly little is known about how the bond-forming ability of a metal, in general, varies across the Periodic Table. In particular, the effect of reactant valency on such trends is poorly understood. Herein, the authors examine these key issues by using density functional theory calculations to study CO and CN formations over the 4d metals. The calculations reveal that the chemistries differ in a fundamental way. In the case of CO formation, the reaction enthalpies span a much greater range than those of CN formation. Moreover, CO formation is found to be kinetically sensitive to the metal; here the reaction barriers (E-a) are found to be influenced by the reaction enthalpy. CN formation, conversely, is found to be relatively kinetically insensitive to the metal, and there is no correlation found between the reaction barriers and the reaction enthalpy. Analysis has shown that at the final adsorbed state, the interaction between N and the surface is relatively greater than that of O. Furthermore, in comparison with O, relatively less bonding between the surface and N is observed to be lost during transition state formation. These greater interactions between N and the surface, which can be related to the larger valency of N, are found to be responsible for the relatively smaller enthalpy range and limited variation in E-a for CN formation. (C) 2007 American Institute of Physics.
Resumo:
The dissociative adsorption of N-2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.
Resumo:
An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.
Resumo:
Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N-2+3H(2)-->2NH(3)). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H-->NH, NH+H-->NH2 and NH2+H-->NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H-->CH and O+H-->OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors. (C) 2003 American Institute of Physics.
Resumo:
To shed light on stepwise addition reactions in ammonia synthesis, density functional theory calculations are carried out to investigate NHx (x = 1-3) formation on Ru(0001). The reactions on a flat surface are first examined. Transition states and reaction barriers are determined. It is found that the reaction barriers for these stepwise addition reactions are rather high. For example, the barrier for NH hydrogenation is calculated to be 1.28 eV, which is comparable with that of N-2 dissociation. One of the stepwise addition reactions, NH + H --> NH2, on a stepped surface is also considered. Interestingly, the reaction barrier is found to be significantly lower than that on the flat surface, but is considerably higher than that of N-2 dissociation on the same stepped surface. In addition, the coverage effect on the reaction energetics is also addressed. (C) 2001 Published by Elsevier Science B.V.
Resumo:
A catalyst preparation by design is one of the ultimate goals in chemistry. The first step towards this goal is to understand the origin of reaction barriers. In this study, we have investigated several catalytic reactions on some transition metal surfaces, using density functional theory. All the reaction barriers have been determined. By detailed analyses we obtain some insight into the reaction barrier. Each barrier is related to (i) the potential energy surface of reactants on the surface, (ii) the total chemisorption energy of reactants, and (iii) the metal d orbital occupancy and the reactant valency. (C) 2001 American Institute of Physics.
Resumo:
Alloying metals is often used as an effective way to enhance the reactivity of surfaces. Aiming to shed light on the effect of alloying on reaction mechanisms, we carry out a comparative study of CO oxidation on Cu3Pt(111), Pt(111), and Cu(111) by means of density functional theory calculations. Alloying effects on the bonding sites and bonding energies of adsorbates, and the reaction pathways are investigated. It is shown that CO preferentially adsorbs on an atop site of Pt and O preferentially adsorbs on a fcc hollow site of three Cu atoms on Cu3Pt(111). It is also found that the adsorption energies of CO (or O-a) decreases on Pt (or Cu) on the alloy surface with respect to those on pure metals. More importantly, having identified the transition states for CO oxidation on those three surfaces, we found an interesting trend for the reaction barrier on the three surfaces. Similar to the adsorption energies, the reaction barrier on Cu3Pt possesses an intermediate value of those on pure Pt and Cu metals. The physical origin of these results has been analyzed in detail. (C) 2001 American Institute of Physics.
Resumo:
Catalytic ammonia synthesis is believed to proceed via dissociation of N-2 and H-2 with subsequent stepwise addition reactions from an adsorbed nitrogen atom to NH3. The first step, N-2 dissociation, has been thoroughly studied. However, little is known about the microscopic details of the stepwise addition reactions. To shed light on these stepwise addition reactions, density functional theory calculations with the generalized gradient approximation are employed to investigate NHx (x=1,3) formation on Ru(0001). Transition states and reaction barriers are determined in each elementary step. It is found that the reaction barriers for stepwise addition reactions are rather high, for example, the barrier for NH hydrogenation is calculated to be 1.28 eV, which is comparable with that of N-2 dissociation. In addition, one of the stepwise addition reactions on a stepped surface is also considered. The reaction barrier is found to be much higher than that of N-2 dissociation on the same stepped surface, which indicates the importance of stepwise addition reactions in ammonia synthesis. (C) 2001 American Institute of Physics.
Resumo:
A series of twelve benzoate esters was metabolised, by species of the Phellinus genus of wood-rotting fungi, to yield the corresponding benzyl alcohol derivatives and eight salicylates. The isolation of a stable oxepine metabolite, from methyl benzoate, allied to evidence of the migration and retention of a carbomethoxy group ( the NIH Shift), during enzyme-catalysed ortho-hydroxylation of alkyl benzoates to form salicylates, is consistent with a mechanism involving an initial arene epoxidation step. This mechanism was confirmed by the isolation of a remarkably stable, optically active, substituted benzene oxide metabolite of methyl 2-( trifluoromethyl) benzoate, which slowly converted into the racemic form. The arene oxide was found to undergo a cycloaddition reaction with 4-phenyl-1,2,4-triazoline-3,5-dione to yield a crystalline cycloadduct whose structure and racemic nature was established by X-ray crystallography. The metabolite was also found to undergo some novel benzene oxide reactions, including epoxidation to give an anti-diepoxide, base-catalysed hydrolysis to form a trans-dihydrodiol and acid-catalysed aromatisation to yield a salicylate derivative via the NIH Shift of a carbomethoxy group.
Resumo:
The sulfur tolerance of a barium-containing NOx storage/reduction trap was investigated using infrared analysis. It was confirmed that barium carbonate could be replaced by barium sulfate by reaction with low concentrations of sulfur dioxide (50 ppm) in the presence of large concentrations of carbon dioxide (10%) at temperatures up to 700 degreesC. These sulfates could at least be partially removed by switching to hydrogen-rich conditions at elevated temperatures. Thermodynamic calculations were used to evaluate the effects of gas composition and temperature on the various reactions of barium sulfate and carbonate under oxidizing and reducing conditions. These calculations clearly showed that if, under a hydrogen-rich atmosphere, carbon dioxide is included as a reactant and barium carbonate as a product then barium sulfate can be removed by reaction with carbon dioxide at a much lower temperature than is possible by decomposition to barium oxide. It was also found that if hydrogen sulfide was included as a product of decomposition of barium sulfate instead of sulfur dioxide then the temperature of reaction could be significantly lowered. Similar calculations were conducted using a selection of other alkaline-earth and alkali metals. In this case calculations were simulated in a gas mixture containing carbon monoxide, hydrogen and carbon dioxide with partial pressures similar to those encountered in real exhausts during switches to rich conditions. The results indicated that there are metals such as lithium and strontium with less stable sulfates than barium, which may also possess sufficient NOx storage capacity to give sulfur-tolerant NOx traps.
Resumo:
The nature of the silver phases of Ag/Al2O3 catalysts (prepared by silver nitrate impregnation followed by calcination) was investigated by X-ray diffractograms (XRD), transmission electron microscopy (TEM) and UV-VIS analyses and related to the activity of the corresponding materials for the oxidation of NO to NO2. The UV-VIS spectrum of the 1.2 wt.% Ag/Al2O3 exhibited essentially one band associated with Ag+ species and the NO2 yields measured over this material were negligible. A 10 wt.% Ag/Al2O3 material showed the presence of oxidic species of silver (as isolated Ag+ cations and silver aluminate), but the UV-VIS data also revealed the presence of some metallic silver. The activity for the NO oxidation to NO2 of this sample was moderate. The same 10% sample either reduced in H-2 or used for the C3H6-selective catalytic reduction (SCR) of NO showed a significantly larger proportion of silver metallic phases and these samples displayed a high activity for the formation of NO2. These data show that the structure and nature of the silver phases of Ag/Al2O3 catalysts can markedly change under reaction feed containing only a fraction of reducing agent (i.e. 500 ppm of propene) in net oxidizing conditions (2.5% O-2). The low activity for N-2 formation during the C3H6-SCR of NO (reported in an earlier study) over the high loading sample can. therefore, he related to the presence of metallic silver. which is yet a good catalyst for NO oxidation to NO2. The reverse observations apply for the oxide species observed over the low loading sample, which is a good SCR catalyst but do not oxidize NO to NO2. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper discusses a number of checks that should be carried out to ensure that the kinetic and spectroscopic measurements made using a DRIFTS cell are meaningful. The observations reported here demonstrate how an appropriately modified commercial DRIFTS cell can provide pertinent kinetic information about both gaseous products and the related surface intermediates. The oxidation of CO with 02 was used as a test to assess the catalyst bed bypass by the reaction mixture. Full CO conversion was obtained after the light-off temperature in the case of the modified cell, contrary to the case of the original cell, for which 80% of the reaction mixture bypassed the catalyst bed. The water-gas shift reaction over a Pt/CeO2 catalyst was used as a model reaction to further characterize the behavior of the cell under reaction conditions. The catalyst bed was shown not to be a dead-zone and was purged in essentially the same time as that needed to purge the cell. The reaction chamber globally operated in a quasi plug-flow mode and the gas composition in the thin catalyst bed appears to be homogeneous when operated under differential conditions. The production of the gas-phase reaction product CO2 could be simultaneously followed both by mass spectrometry and DRIFTS, both techniques leading to identical results. Various IR bands integration methods were discussed to allow a precise and accurate determination of the surface concentration of adsorbates during isotopic exchange. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The chemical equilibrium of mutual interconversions of tert-butylbenzenes was studied in the temperature range 286 to 423 K using chloroaluminate ionic liquids as a catalyst. Enthalpies of five reactions of isomerization and transalkylation of tert-butylbenzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. Molar enthalpies of vaporization of methyl-tert-butylbenzenes and 1,4-ditert-butylbenzene were obtained by the transpiration method and were used for a recalculation of enthalpies of reactions and equilibrium constants into the gaseous phase. Using these experimental results, ab initio methods (B3LYP and G3MP2) have been tested for prediction thermodynamic functions of the five reactions under study successfully. Thermochemical investigations of tert-butyl benzenes available in the literature combined with experimental results have helped to resolve contradictions in the available thermochemical data for tert-butylbenzene and to recommend consistent and reliable enthalpies of formation for this compound in the liquid and the gaseous state.