842 resultados para Goals orientation
Resumo:
We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.
Resumo:
A series of monodomain liquid crystalline (LC) elastomers based on a polysiloxane were synthesised. These elastomers were prepared either with one or two cross-linking agents in the presence of a mechanical field. By using the real-time X-ray facility at the University of Reading (AXIS), we have shown that the nematic order parameter 〈P2 〉 is dependent on both the extension λ value and the degree of cross-linking. We have also shown that the monodomain elastomers, exhibiting permanent alignment and 〈P2 〉 values of about 0.5, can be prepared by using only one cross-linking agent making the synthesis of these monodomain LC elastomers much more simple and cost effective than that proposed by Küpfer.
Resumo:
Molecular orientation parameters have been measured for the non-crystalline component of crosslinked natural rubber samples deformed in uniaxial tension as a function of the extension ratio and of temperature. The orientation parapeters 〈P2(cosα)〉 and 〈P4(cosα)〉 were obtained by an analysis of the anisotropy of the wide-angle X-ray scattering functions. For the measurements made at high temperatures the level of crystallinity detected was negligible and the orientation-strain behaviour could be compared directly with the predictions of molecular models of rubber elasticity. The molecular orientation behaviour with strain was found to be at variance with the estimates of the affine model particularly at low and moderate strains. Extension of the crosslinked rubber at room temperature led to strain-crystallization and measurements of both the molecular orientation of the non-crystalline chains and the degree of crystallinity during extension and relaxation enabled the role of the crystallites in the deformation process to be considered in detail. The intrinsic birefringence of the non-crystalline component was estimated, through the use of the 〈P2(cosα)〉 values obtained from X-ray scattering measurements, to be 0.20±0.02.
Resumo:
Procedures for obtaining molecular orientational parameters from wide angle X-ray scattering patterns of samples of thermotropic liquid crystalline polymers are presented. The methods described are applied to an extrusion-aligned sample of a random copolyester of poly(ethylene terephthalate) (PET) and p-acetoxybenzoic acid. Values of the orientational parameters are obtained from both the interchain and intrachain maxima in the scattering pattern. The differences in the values so derived suggest some level of local rotational correlation
Resumo:
A procedure is presented for obtaining full molecular orientation information from wide angle X-ray scattering patterns of deformed non-crystalline polymers. The method is based on the analysis of experimental and calculated scattering patterns into their spherical harmonics. The results obtained for PMMA are compared with values predicted by the pseudo affine and affine deformation schemes.
WAXS studies of global molecular orientation induced in nematic liquid crystals by simple shear flow
Resumo:
Global molecular orientation function coefficients for the nematic liquid crystal 4-cyano 4'-nn -pentylbiphenyl (5CB) in shear flow are presented, being extracted from 2-dimensional Wide-Angle X-ray Scattering data. A linear increase in orientation parameter P2 is observed with a logarithmic increase in shear rate. It is proposed that this arises from an increased number of LC directors aligning to the shear axis. Upon cessation of shear flow, the anisotropy is seen to relax away completely, over a time scale which is inversely proportional to the previously applied shear rate.