944 resultados para Geometry.
Resumo:
In a high mobility two-dimensional electron gas (2DEG) realized in a GaAs/Al0.3Ga0.7As quantum well we observe changes in the Shubnikov-de Haas oscillations (SdHO) and in the Hall resistance for different sample geometries. We observe for each sample geometry a strong negative magnetoresistance around zero magnetic field which consists of a peak around zero magnetic field and of a huge magnetoresistance at larger fields. The peak around zero magnetic field is left unchanged for different geometries.
Resumo:
International audience
Resumo:
In the first part of this thesis we generalize a theorem of Kiming and Olsson concerning the existence of Ramanujan-type congruences for a class of eta quotients. Specifically, we consider a class of generating functions analogous to the generating function of the partition function and establish a bound on the primes ℓ for which their coefficients c(n) obey congruences of the form c(ℓn + a) ≡ 0 (mod ℓ). We use this last result to answer a question of H.C. Chan. In the second part of this thesis [S2] we explore a natural analog of D. Calegari’s result that there are no hyperbolic once-punctured torus bundles over S^1 with trace field having a real place. We prove a contrasting theorem showing the existence of several infinite families of pairs (−χ, p) such that there exist hyperbolic surface bundles over S^1 with trace field of having a real place and with fiber having p punctures and Euler characteristic χ. This supports our conjecture that with finitely many known exceptions there exist such examples for each pair ( −χ, p).
Resumo:
Polymer aluminum electrolytic capacitors were introduced to provide an alternative to liquid electrolytic capacitors. Polymer electrolytic capacitor electric parameters of capacitance and ESR are less temperature dependent than those of liquid aluminum electrolytic capacitors. Furthermore, the electrical conductivity of the polymer used in these capacitors (poly-3,4ethylenedioxithiophene) is orders of magnitude higher than the electrolytes used in liquid aluminum electrolytic capacitors, resulting in capacitors with much lower equivalent series resistance which are suitable for use in high ripple-current applications. The presence of the moisture-sensitive polymer PEDOT introduces concerns on the reliability of polymer aluminum capacitors in high humidity conditions. Highly accelerated stress testing (or HAST) (110ºC, 85% relative humidity) of polymer aluminum capacitors in which the parts were subjected to unbiased HAST conditions for 700 hours was done to understand the design factors that contribute to the susceptibility to degradation of a polymer aluminum electrolytic capacitor exposed to HAST conditions. A large scale study involving capacitors of different electrical ratings (2.5V – 16V, 100µF – 470 µF), mounting types (surface-mount and through-hole) and manufacturers (6 different manufacturers) was done to determine a relationship between package geometry and reliability in high temperature-humidity conditions. A Geometry-Based HAST test in which the part selection limited variations between capacitor samples to geometric differences only was done to analyze the effect of package geometry on humidity-driven degradation more closely. Raman spectroscopy, x-ray imaging, environmental scanning electron microscopy, and destructive analysis of the capacitors after HAST exposure was done to determine the failure mechanisms of polymer aluminum capacitors under high temperature-humidity conditions.
Resumo:
This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.
Resumo:
International audience
Resumo:
According to a traditional rationalist proposal, it is possible to attain knowledge of certain necessary truths by means of insight—an epistemic mental act that combines the 'presentational' character of perception with the a priori status usually reserved for discursive reasoning. In this dissertation, I defend the insight proposal in relation to a specific subject matter: elementary Euclidean plane geometry, as set out in Book I of Euclid's Elements. In particular, I argue that visualizations and visual experiences of diagrams allow human subjects to grasp truths of geometry by means of visual insight. In the first two chapters, I provide an initial defense of the geometrical insight proposal, drawing on a novel interpretation of Plato's Meno to motivate the view and to reply to some objections. In the remaining three chapters, I provide an account of the psychological underpinnings of geometrical insight, a task that requires considering the psychology of visual imagery alongside the details of Euclid's geometrical system. One important challenge is to explain how basic features of human visual representations can serve to ground our intuitive grasp of Euclid's postulates and other initial assumptions. A second challenge is to explain how we are able to grasp general theorems by considering diagrams that depict only special cases. I argue that both of these challenges can be met by an account that regards geometrical insight as based in visual experiences involving the combined deployment of two varieties of 'dynamic' visual imagery: one that allows the subject to visually rehearse spatial transformations of a figure's parts, and another that allows the subject to entertain alternative ways of structurally integrating the figure as a whole. It is the interplay between these two forms of dynamic imagery that enables a visual experience of a diagram, suitably animated in visual imagination, to justify belief in the propositions of Euclid’s geometry. The upshot is a novel dynamic imagery account that explains how intuitive knowledge of elementary Euclidean plane geometry can be understood as grounded in visual insight.
Resumo:
The European program HORIZON2020 aims to have 20% of electricity produced by renewable sources. The building sector represents 40% of the European Union energy consumption. Reducing energy consumption in buildings is therefore a priority for energy efficiency. The present investigation explores the most adequate roof shapes compatible with the placement of different types of small wind energy generators on high-rise buildings for urban wind energy exploitation. The wind flow around traditional state-of-the-art roof shapes is considered. In addition, the influence of the roof edge on the wind flow on high-rise buildings is analyzed. These geometries are investigated, both qualitatively and quantitatively, and the turbulence intensity threshold for horizontal axis wind turbines is considered. The most adequate shapes for wind energy exploitation are identified, studying vertical profiles of velocity, turbulent kinetic energy and turbulence intensity. Curved shapes are the most interesting building roof shapes from the wind energy exploitation point of view, leading to the highest speed-up and the lowest turbulence intensity.
Resumo:
The purpose of this article is to present the results obtained from a questionnaire applied to Costa Rican high school students, in order to know their perspectives about geometry teaching and learning. The results show that geometry classes in high school education have been based on a traditional system of teaching, where the teacher presents the theory; he presents examples and exercises that should be solved by students, which emphasize in the application and memorization of formulas. As a consequence, visualization processes, argumentation and justification don’t have a preponderant role. Geometry is presented to students like a group of definitions, formulas, and theorems completely far from their reality and, where the examples and exercises don’t possess any relationship with their context. As a result, it is considered not important, because it is not applicable to real life situations. Also, the students consider that, to be successful in geometry, it is necessary to know how to use the calculator, to carry out calculations, to have capacity to memorize definitions, formulas and theorems, to possess capacity to understand the geometric drawings and to carry out clever exercises to develop a practical ability.
Resumo:
La tesi si divide in due macroargomenti relativi alla preparazione della geometria per modelli MCNP. Il primo è quello degli errori geometrici che vengono generati quando avviene una conversione da formato CAD a CSG e le loro relazioni con il fenomeno delle lost particles. Il passaggio a CSG tramite software è infatti inevitabile per la costruzione di modelli complessi come quelli che vengono usati per rappresentare i componenti di ITER e può generare zone della geometria che non vengono definite in modo corretto. Tali aree causano la perdita di particelle durante la simulazione Monte Carlo, andando ad intaccare l' integrità statistica della soluzione del trasporto. Per questo motivo è molto importante ridurre questo tipo di errori il più possibile, ed in quest'ottica il lavoro svolto è stato quello di trovare metodi standardizzati per identificare tali errori ed infine stimarne le dimensioni. Se la prima parte della tesi è incentrata sui problemi derivanti dalla modellazione CSG, la seconda invece suggerisce un alternativa ad essa, che è l'uso di Mesh non Strutturate (UM), un approccio che sta alla base di CFD e FEM, ma che risulta innovativo nell'ambito di codici Monte Carlo. In particolare le UM sono state applicate ad una porzione dell' Upper Launcher (un componente di ITER) in modo da validare tale metodologia su modelli nucleari di alta complessità. L'approccio CSG tradizionale e quello con UM sono state confrontati in termini di risorse computazionali richieste, velocità, precisione e accuratezza sia a livello di risultati globali che locali. Da ciò emerge che, nonostante esistano ancora alcuni limiti all'applicazione per le UM dovuti in parte anche alla sua novità, vari vantaggi possono essere attribuiti a questo tipo di approccio, tra cui un workflow più lineare, maggiore accuratezza nei risultati locali, e soprattutto la possibilità futura di usare la stessa mesh per diversi tipi di analisi (come quelle termiche o strutturali).
Resumo:
Vaults are an architectural element which during construction history have been built with a great variety of different materials, shapes, and sizes. The shape of these structural elements was often dependent by the necessity to cover complex spaces, by the needed loading capacity, or by architectural aesthetics. Within this complex scenario masonry patterns generates also different effects on loading capacity, load percolation and stiffness of the structure. These effects were been extensively investigated, both with empirical observations and with modern numerical methods. While most of them focus on analyzing the load bearing capacity or the texture effect on vaulted structures, the aim of this analysis is to investigate on the effects of the variation of a single structural characteristic on the load percolation in the vault. Moreover, an additional purpose of the work is related to the coding of a parametrical model aiming at generating different masonry vaulted structures. Nevertheless, proposed script can generate different typology of vaulted structure basing on some structural characteristics, such as the span and the length to cover and the dimensions of the blocks.
Resumo:
The weight-transfer effect, consisting of the change in dynamic load distribution between the front and the rear tractor axles, is one of the most impairing phenomena for the performance, comfort, and safety of agricultural operations. Excessive weight transfer from the front to the rear tractor axle can occur during operation or maneuvering of implements connected to the tractor through the three-point hitch (TPH). In this respect, an optimal design of the TPH can ensure better dynamic load distribution and ultimately improve operational performance, comfort, and safety. In this study, a computational design tool (The Optimizer) for the determination of a TPH geometry that minimizes the weight-transfer effect is developed. The Optimizer is based on a constrained minimization algorithm. The objective function to be minimized is related to the tractor front-to-rear axle load transfer during a simulated reference maneuver performed with a reference implement on a reference soil. Simulations are based on a 3-degrees-of-freedom (DOF) dynamic model of the tractor-TPH-implement aggregate. The inertial, elastic, and viscous parameters of the dynamic model were successfully determined through a parameter identification algorithm. The geometry determined by the Optimizer complies with the ISO-730 Standard functional requirements and other design requirements. The interaction between the soil and the implement during the simulated reference maneuver was successfully validated against experimental data. Simulation results show that the adopted reference maneuver is effective in triggering the weight-transfer effect, with the front axle load exhibiting a peak-to-peak value of 27.1 kN during the maneuver. A benchmark test was conducted starting from four geometries of a commercially available TPH. As result, all the configurations were optimized by above 10%. The Optimizer, after 36 iterations, was able to find an optimized TPH geometry which allows to reduce the weight-transfer effect by 14.9%.
Resumo:
In questo lavoro estendiamo concetti classici della geometria Riemanniana al fine di risolvere le equazioni di Maxwell sul gruppo delle permutazioni $S_3$. Cominciamo dando la strutture algebriche di base e la definizione di calcolo differenziale quantico con le principali proprietà. Generalizziamo poi concetti della geometria Riemanniana, quali la metrica e l'algebra esterna, al caso quantico. Tutto ciò viene poi applicato ai grafi dando la forma esplicita del calcolo differenziale quantico su $\mathbb{K}(V)$, della metrica e Laplaciano del secondo ordine e infine dell'algebra esterna. A questo punto, riscriviamo le equazioni di Maxwell in forma geometrica compatta usando gli operatori e concetti della geometria differenziale su varietà che abbiamo generalizzato in precedenza. In questo modo, considerando l'elettromagnetismo come teoria di gauge, possiamo risolvere le equazioni di Maxwell su gruppi finiti oltre che su varietà differenziabili. In particolare, noi le risolviamo su $S_3$.
Resumo:
Maxillofacial trauma resulting from falls in elderly patients is a major social and health care concern. Most of these traumatic events involve mandibular fractures. The aim of this study was to analyze stress distributions from traumatic loads applied on the symphyseal, parasymphyseal, and mandibular body regions in the elderly edentulous mandible using finite-element analysis (FEA). Computerized tomographic analysis of an edentulous macerated human mandible of a patient approximately 65 years old was performed. The bone structure was converted into a 3-dimensional stereolithographic model, which was used to construct the computer-aided design (CAD) geometry for FEA. The mechanical properties of cortical and cancellous bone were characterized as isotropic and elastic structures, respectively, in the CAD model. The condyles were constrained to prevent free movement in the x-, y-, and z-axes during simulation. This enabled the simulation to include the presence of masticatory muscles during trauma. Three different simulations were performed. Loads of 700 N were applied perpendicular to the surface of the cortical bone in the symphyseal, parasymphyseal, and mandibular body regions. The simulation results were evaluated according to equivalent von Mises stress distributions. Traumatic load at the symphyseal region generated low stress levels in the mental region and high stress levels in the mandibular neck. Traumatic load at the parasymphyseal region concentrated the resulting stress close to the mental foramen. Traumatic load in the mandibular body generated extensive stress in the mandibular body, angle, and ramus. FEA enabled precise mapping of the stress distribution in a human elderly edentulous mandible (neck and mandibular angle) in response to 3 different traumatic load conditions. This knowledge can help guide emergency responders as they evaluate patients after a traumatic event.