867 resultados para Genetic Algorithm for Rule-Set Prediction (GARP)
Resumo:
Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.
Resumo:
Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.
Resumo:
Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.
Resumo:
This thesis provides three original contributions to the field of Decision Sciences. The first contribution explores the field of heuristics and biases. New variations of the Cognitive Reflection Test (CRT--a test to measure "the ability or disposition to resist reporting the response that first comes to mind"), are provided. The original CRT (S. Frederick [2005] Journal of Economic Perspectives, v. 19:4, pp.24-42) has items in which the response is immediate--and erroneous. It is shown that by merely varying the numerical parameters of the problems, large deviations in response are found. Not only the final results are affected by the proposed variations, but so is processing fluency. It seems that numbers' magnitudes serve as a cue to activate system-2 type reasoning. The second contribution explores Managerial Algorithmics Theory (M. Moldoveanu [2009] Strategic Management Journal, v. 30, pp. 737-763); an ambitious research program that states that managers display cognitive choices with a "preference towards solving problems of low computational complexity". An empirical test of this hypothesis is conducted, with results showing that this premise is not supported. A number of problems are designed with the intent of testing the predictions from managerial algorithmics against the predictions of cognitive psychology. The results demonstrate (once again) that framing effects profoundly affect choice, and (an original insight) that managers are unable to distinguish computational complexity problem classes. The third contribution explores a new approach to a computationally complex problem in marketing: the shelf space allocation problem (M-H Yang [2001] European Journal of Operational Research, v. 131, pp.107--118). A new representation for a genetic algorithm is developed, and computational experiments demonstrate its feasibility as a practical solution method. These studies lie at the interface of psychology and economics (with bounded rationality and the heuristics and biases programme), psychology, strategy, and computational complexity, and heuristics for computationally hard problems in management science.
Resumo:
In the last years the number of industrial applications for Augmented Reality (AR) and Virtual Reality (VR) environments has significantly increased. Optical tracking systems are an important component of AR/VR environments. In this work, a low cost optical tracking system with adequate attributes for professional use is proposed. The system works in infrared spectral region to reduce optical noise. A highspeed camera, equipped with daylight blocking filter and infrared flash strobes, transfers uncompressed grayscale images to a regular PC, where image pre-processing software and the PTrack tracking algorithm recognize a set of retro-reflective markers and extract its 3D position and orientation. Included in this work is a comprehensive research on image pre-processing and tracking algorithms. A testbed was built to perform accuracy and precision tests. Results show that the system reaches accuracy and precision levels slightly worse than but still comparable to professional systems. Due to its modularity, the system can be expanded by using several one-camera tracking modules linked by a sensor fusion algorithm, in order to obtain a larger working range. A setup with two modules was built and tested, resulting in performance similar to the stand-alone configuration.
Resumo:
Of all of the genes associated with the development of Diabetes mellitus type 1 (T1D), the largest contribution comes from the genes in the Human Leukocyte Antigen (HLA) region, mostly the class II DR e DQ genes. Specific combinations of alleles DRB1, DQA1 and DQB1 constituting haplotypes, and further, a combination of more than one haplotype, providing multilocus genotypes are associated with susceptibility, protection and neutrality to DM1. Thus, the aim of present study was to verified the association of polymorphisms of HLA genes class II with susceptibility to type 1 diabetes mellitus (T1D). Ninety-two patients with T1D and 100 individuals normoglycemics (NG) aged between 6 and 20 years were studied. Genomic DNA was obtained from peripheral whole blood, collected in EDTA tube, using the extraction kit Illustra Triple Prep®, GE Healthcare. For HLA typing was used DNA LABType system by One Lambda kit applying Luminex® technology to the method of PCRSSO typing reverse. The alleles DRB1*03:01, *04:05, *04:01, *04:02, DQA1*03:01g, *05:01g, DQB1*02:01g, *03:02, the haplotypes DRB1*03:01-DQA1*05:01-DQB1*02:01, DRB1*04:05-DQA1*03:01g-DQB1*03:02, DRB1*04:02-DQA1*03:01g-DQB1*03:02, DRB1*04:01-DQA1*03:01g-DQB1*03:02 and DR3-DQ2/DR4-DQ8 genotype were significantly associated with the chance of developing T1D. The alleles DRB1*11:01, *15:03, *15:01, *13:01, DQA1*01:02, *04:01g, *01:03, DQB1*06:02, *03:01g, *06:03, *04:02, the haplotypes DRB1*11:01-DQA1*05:01-DQB1*03:01, DRB1*13:01-DQA1*01:03-DQB1*06:03 and DRX-DQX/DRX-DQX genotype, formed by other than the DR3-DQ2 or DR4-DQ8 haplotypes, were significantly associated with T1D protection Despite the major racial Brazilian, even at the regional level, these results are similar to the majority of alleles, genotypes and haplotypes of HLA class II-related susceptibility or resistance to T1D, extensively described in the literature for Caucasian population. Children with age at diagnosis less than 5 years of age had significantly higher frequency of the heterozygous genotype DR3-DQ2/DR4-DQ8 compared to children with age at diagnosis than 5 years old. These results also demonstrate strong association of the genetic profile of the class II HLA for this age group, possibly associated with the severity and rapid progression to the onset of T1D. The knowledge of HLA class II genes may be useful in genetic screens that allow the prediction of T1D
Resumo:
Telecommunications play a key role in contemporary society. However, as new technologies are put into the market, it also grows the demanding for new products and services that depend on the offered infrastructure, making the problems of planning telecommunications networks, despite the advances in technology, increasingly larger and complex. However, many of these problems can be formulated as models of combinatorial optimization, and the use of heuristic algorithms can help solving these issues in the planning phase. In this project it was developed two pure metaheuristic implementations Genetic algorithm (GA) and Memetic Algorithm (MA) plus a third hybrid implementation Memetic Algorithm with Vocabulary Building (MA+VB) for a problem in telecommunications that is known in the literature as Problem SONET Ring Assignment Problem or SRAP. The SRAP arises during the planning stage of the physical network and it consists in the selection of connections between a number of locations (customers) in order to meet a series of restrictions on the lowest possible cost. This problem is NP-hard, so efficient exact algorithms (in polynomial complexity ) are not known and may, indeed, even exist