986 resultados para Generative organs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oropouche virus (OROV), of the family Bunyaviridae, is the second most frequent arbovirus causing febrile disease in Brazil. In spite of this, little is known about pathogenesis of OROV infection. This report describes an experimental model of OROV in golden hamster (Mesocricetus auratus). Following subcutaneous inoculation of OROV, over 50% of the animals developed disease characterized by lethargy, ruffled fur, shivering, paralysis, and approximately one third died. Animals were sacrificed on days 1, 3, 5, 8 and 11 post-inoculation to collect tissue samples from brain, heart, liver, lung, spleen, muscle and blood for virus titration, histology and OROV immunohistochemistry. OROV was detected in high titers in blood, liver and brain, but not in the other organs. Histopathology revealed meningoencephalitis and hepatitis, with abundant OROV antigen detected in liver and brain. Diffuse galectin-3 immunostaining in brain and liver supports microglial and Kupfer cells activation. This is the first description of an experimental model for OROV infection and should be helpful to study pathogenesis and possibly to test antiviral interventions such as drugs and vaccine candidates. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Kidney transplantation is widely recognized as the best treatment in patients who require renal replacement therapy. Although considered a clinical and surgical triumph, it is also a source of frustration because of lack of donor organs and the growth of waiting lists. Strategies need to be developed to increase the supply of organs. One measure is use of expanded criteria for donation. Objective. To evaluate the effect of donor age on cadaver graft survival. Materials and Methods. We reviewed the medical records for 454 patients who underwent kidney transplantation with cadaver donors from April 1987 to December 2003. Results. Donor age had a significant effect on kidney transplant survival. Survival of grafts from donors aged 16 to 40 years (mean, 143.30 months) was significantly greater compared with that of grafts from donors older than 40 years (66.46 months) (P = .005). The HLA matching and cold ischemia time did not significantly affect transplant survival (P = .98 and P = .16, respectively). Conclusions. Kidneys from cadaver donors older than 40 years significantly compromised graft survival, generating a negative effect via early return of recipients to waiting lists and increasing the rate of repeat transplantation, risk of death, and unnecessary costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To investigate glomerular development and expression of insulin and insulin-like growth factor receptors in an experimental model of intrauterine growth restriction (IUGR). Material and Methods: We studied three groups of Sprague-Dawley fetuses: IUGR - restricted by ligation of the right uterine artery; C-IUGR - left horn controls, and EC - external controls (non-manipulated). Body and organs were weighed, and glomerular number and volume were analyzed. Expression of IR beta, IRS-1, IRS-2 and IGF-IR beta was analyzed in liver, intestine and kidneys by immunoblotting. Results: Organ/body weight ratios were similar. In IUGR, glomerular number and volume were increased compared to C-IUGR and EC (p < 0.001). In the IUGR liver, increases were found in IGF-IR beta compared to C-IUGR and EC; IR beta compared to EC, and IRS-2 compared to C-IUGR. However, decreases in IR beta were noted in IUGR compared to C-IUGR; IRS-1 compared to C-IUGR and EC, and IRS-2 compared to EC. In IUGR intestine, increases were detected in IR beta, IRS-1 and IGF-IR beta compared to C-IUGR and EC. In IUGR kidneys, increases were observed in IR beta and IGF-IR beta compared to C-IUGR and EC, and IRS-1 compared to EC. Decreased IRS-2 in the intestine and kidney were noticed in IUGR compared to C-IUGR and EC. Conclusion: IUGR fetuses had less glomeruli and alterations in insulin receptors, which may be associated with an increased risk of disease occurrence in adulthood. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is characterized by a block in differentiation and accumulation of promyelocytes in the bone marrow and blood. The majority of APL patients harbor the t(15: 17) translocation leading to expression of the fusion protein promyelocytic-retinoic acid receptor alpha. Treatment with retinoic acid leads to degradation of promyelocytic-retinoic acid receptor alpha protein and disappearance of leukemic cells; however, 30% of APL patients relapse after treatment. One potential mechanism for relapse is the persistence of cancer ""stem"" cells in hematopoietic organs after treatment. Using a novel sorting strategy we developed to isolate murine myeloid cells at distinct stages of differentiation, we identified a population of committed myeloid cells (CD34(+), c-kit(+), Fc gamma RIII/II(+), Gr1(int)) that accumulates in the spleen and bone marrow in a murine model of APL. We observed that these cells are capable of efficiently generating leukemia in recipient mice, demonstrating that this population represents the APL cancer-initiating cell. These cells down-regulate the transcription factor CCAAT/enhancer binding protein alpha (C/EBP alpha) possibly through a methylation-dependent mechanism, indicating that C/EBP alpha deregulation contributes to transformation of APL cancer-initiating cells. Our findings provide further understanding of the biology of APL by demonstrating that a committed transformed progenitor can initiate and propagate the disease. (Blood. 2009; 114: 5415-5425)

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by Which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. Objectives: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. Methods: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. Measurements and Main Results: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-kappa B pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. Conclusions: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.