967 resultados para Generalized Driven Nonlinear Threshold Model
Resumo:
Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.
Resumo:
Geographic knowledge discovery (GKD) is the process of extracting information and knowledge from massive georeferenced databases. Usually the process is accomplished by two different systems, the Geographic Information Systems (GIS) and the data mining engines. However, the development of those systems is a complex task due to it does not follow a systematic, integrated and standard methodology. To overcome these pitfalls, in this paper, we propose a modeling framework that addresses the development of the different parts of a multilayer GKD process. The main advantages of our framework are that: (i) it reduces the design effort, (ii) it improves quality systems obtained, (iii) it is independent of platforms, (iv) it facilitates the use of data mining techniques on geo-referenced data, and finally, (v) it ameliorates the communication between different users.
Resumo:
Current model-driven Web Engineering approaches (such as OO-H, UWE or WebML) provide a set of methods and supporting tools for a systematic design and development of Web applications. Each method addresses different concerns using separate models (content, navigation, presentation, business logic, etc.), and provide model compilers that produce most of the logic and Web pages of the application from these models. However, these proposals also have some limitations, especially for exchanging models or representing further modeling concerns, such as architectural styles, technology independence, or distribution. A possible solution to these issues is provided by making model-driven Web Engineering proposals interoperate, being able to complement each other, and to exchange models between the different tools. MDWEnet is a recent initiative started by a small group of researchers working on model-driven Web Engineering (MDWE). Its goal is to improve current practices and tools for the model-driven development of Web applications for better interoperability. The proposal is based on the strengths of current model-driven Web Engineering methods, and the existing experience and knowledge in the field. This paper presents the background, motivation, scope, and objectives of MDWEnet. Furthermore, it reports on the MDWEnet results and achievements so far, and its future plan of actions.
Empirical study on the maintainability of Web applications: Model-driven Engineering vs Code-centric
Resumo:
Model-driven Engineering (MDE) approaches are often acknowledged to improve the maintainability of the resulting applications. However, there is a scarcity of empirical evidence that backs their claimed benefits and limitations with respect to code-centric approaches. The purpose of this paper is to compare the performance and satisfaction of junior software maintainers while executing maintainability tasks on Web applications with two different development approaches, one being OOH4RIA, a model-driven approach, and the other being a code-centric approach based on Visual Studio .NET and the Agile Unified Process. We have conducted a quasi-experiment with 27 graduated students from the University of Alicante. They were randomly divided into two groups, and each group was assigned to a different Web application on which they performed a set of maintainability tasks. The results show that maintaining Web applications with OOH4RIA clearly improves the performance of subjects. It also tips the satisfaction balance in favor of OOH4RIA, although not significantly. Model-driven development methods seem to improve both the developers’ objective performance and subjective opinions on ease of use of the method. This notwithstanding, further experimentation is needed to be able to generalize the results to different populations, methods, languages and tools, different domains and different application sizes.
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.
Resumo:
This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs), wherein the handling pressure of process streams is used to enhance the heat integration. The proposed approach combines generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation, in order to minimize the total annualized cost composed by operational and capital expenses. A multi-stage superstructure is developed for the HEN synthesis, assuming constant heat capacity flow rates and isothermal mixing, and allowing for streams splits. In this model, the pressure and temperature of streams must be treated as optimization variables, increasing further the complexity and difficulty to solve the problem. In addition, the model allows for coupling of compressors and turbines to save energy. A case study is performed to verify the accuracy of the proposed model. In this example, the optimal integration between the heat and work decreases the need for thermal utilities in the HEN design. As a result, the total annualized cost is also reduced due to the decrease in the operational expenses related to the heating and cooling of the streams.
Resumo:
Includes bibliographies (p. 22).
Resumo:
"September 30, 1963."
Resumo:
Includes index.
Resumo:
"April 1969."
Resumo:
Includes index.
Resumo:
"8 October 1982."
Resumo:
Includes index.
Resumo:
"March 1962."
Resumo:
"April 1969."