771 resultados para Gender classification model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. The Galatean Risk Screening Tool [1] is a psychological model for mental health risk assessment based on fuzzy sets. This paper details how the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. These semantics are formalised by a detailed specification for an XML structure used to represent the expertise. The component parts were then mapped to equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements. © Springer-Verlag 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, due to globalization of the world the size of data set is increasing, it is necessary to discover the knowledge. The discovery of knowledge can be typically in the form of association rules, classification rules, clustering, discovery of frequent episodes and deviation detection. Fast and accurate classifiers for large databases are an important task in data mining. There is growing evidence that integrating classification and association rules mining, classification approaches based on heuristic, greedy search like decision tree induction. Emerging associative classification algorithms have shown good promises on producing accurate classifiers. In this paper we focus on performance of associative classification and present a parallel model for classifier building. For classifier building some parallel-distributed algorithms have been proposed for decision tree induction but so far no such work has been reported for associative classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* This study was supported in part by the Natural Sciences and Engineering Research Council of Canada, and by the Gastrointestinal Motility Laboratory (University of Alberta Hospitals) in Edmonton, Alberta, Canada.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the presented work the problem of generalized natural environment model of emergency monitoring is presented. The approach, based on using CASE-based technologies is proposed for methodology development in solving this problem. Usage of CASE-based technology and knowledge databases allow for quick and interactive monitoring of current natural environment state and allow to develop adequate model for just-in- time possible emergency modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intrusion detection is a critical component of security information systems. The intrusion detection process attempts to detect malicious attacks by examining various data collected during processes on the protected system. This paper examines the anomaly-based intrusion detection based on sequences of system calls. The point is to construct a model that describes normal or acceptable system activity using the classification trees approach. The created database is utilized as a basis for distinguishing the intrusive activity from the legal one using string metric algorithms. The major results of the implemented simulation experiments are presented and discussed as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Владимир Димитров - Целта на настоящия доклад е формалната спецификация на релационния модел на данни. Тази спецификация след това може да бъде разширена към Обектно-релационния модел на данни и към Потоците от данни.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Дойчин Бояджиев, Галена Пеловска - В статията се предлага оптимизиран алгоритъм, който е по-бърз в сравнение с по- рано описаната ускорена (модифицирана STS) диференчна схема за възрастово структуриран популационен модел с дифузия. Запазвайки апроксимацията на модифицирания STS алгоритъм, изчислителното времето се намаля почти два пъти. Това прави оптимизирания метод по-предпочитан за задачи с нелинейност или с по-висока размерност.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Тодор П. Чолаков, Димитър Й. Биров - Тази статия представя цялостен модел за автоматизиран реинженеринг на наследени системи. Тя описва в детайли процесите на превод на софтуера и на рефакторинг и степента, до която могат да се автоматизират тези процеси. По отношение на превода на код се представя модел за автоматизирано превеждане на код, съдържащ указатели и работа с адресна аритметика. Също така се дефинира рамка за процеса на реинженеринг и се набелязват възможности за по-нататъшно развитие на концепции, инструменти и алгоритми.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the low autocorrelation binary sequence problem (LABSP) is modeled as a mixed integer quadratic programming (MIQP) problem and proof of the model’s validity is given. Since the MIQP model is semidefinite, general optimization solvers can be used, and converge in a finite number of iterations. The experimental results show that IQP solvers, based on this MIQP formulation, are capable of optimally solving general/skew-symmetric LABSP instances of up to 30/51 elements in a moderate time. ACM Computing Classification System (1998): G.1.6, I.2.8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 62M10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 91E45.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60J85, 62P10, 92D25.