826 resultados para Gauss-Seidel algorithm
Resumo:
Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.
Resumo:
This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.
Resumo:
Audio coding is used to compress digital audio signals, thereby reducing the amount of bits needed to transmit or to store an audio signal. This is useful when network bandwidth or storage capacity is very limited. Audio compression algorithms are based on an encoding and decoding process. In the encoding step, the uncompressed audio signal is transformed into a coded representation, thereby compressing the audio signal. Thereafter, the coded audio signal eventually needs to be restored (e.g. for playing back) through decoding of the coded audio signal. The decoder receives the bitstream and reconverts it into an uncompressed signal. ISO-MPEG is a standard for high-quality, low bit-rate video and audio coding. The audio part of the standard is composed by algorithms for high-quality low-bit-rate audio coding, i.e. algorithms that reduce the original bit-rate, while guaranteeing high quality of the audio signal. The audio coding algorithms consists of MPEG-1 (with three different layers), MPEG-2, MPEG-2 AAC, and MPEG-4. This work presents a study of the MPEG-4 AAC audio coding algorithm. Besides, it presents the implementation of the AAC algorithm on different platforms, and comparisons among implementations. The implementations are in C language, in Assembly of Intel Pentium, in C-language using DSP processor, and in HDL. Since each implementation has its own application niche, each one is valid as a final solution. Moreover, another purpose of this work is the comparison among these implementations, considering estimated costs, execution time, and advantages and disadvantages of each one.
Resumo:
Neste tese definimos a aplicação de Gauss de uma hipersuperfície orientada imersa em uma variedade homogênea munida de uma métrica Riemanniana invariante. Nosso principal objetivo e estender para este contexto alguns resultados conhecidos sobre a aplicação de Gauss de uma hipersuperfície de curvatura média constante do espaço Euclidiano, como o teorema de Ruth-Vilm que relaciona a harmonicidade da aplicação de Gauss e a constância da curvatura média, o teorema de Hoffmann-Osserman-Schoen o qual caracteriza o plano e o cilindro como as únicas superfícies completas de curvatura média constante cujas imagens pela aplicação de Gauss estão contidas em um hemisfério da esfera.
Resumo:
Tal como ressaltado em de Faro e Guerra (2014), tem sido frequente em nossos tribunais, sentenças judiciais determinando que, relativamente ao caso de amortizações de dívidas com prestações constantes, a popular Tabela Price seja substituída por um sistema que, fundamentado em uma particular aplicação do regime de juros simples, vem sendo cognominado de “Método de Gauss” (cf. Antonick e Assunção, 2006 e Nogueira, 2013). E isso, frize-se, mantendo-se o valor numérico da taxa de juros especificada no contrato de financiamento (usualmente, habitacional). A par de ser totalmente inadequado, como discutido em de Faro (2014c), associar o nome do grande matemático alemão Johann Carl Friedrich Gauss (1777-1855) ao procedimento em questão, sucede que ao mesmo, como a qualquer outro que seja baseado no regime de juros simples, associam-se incontornáveis inconsistências. Como já anteriormente, amplamente evidenciado em de Faro (2013b e 2014a). Tomando a Tabela Price como base de comparação, o propósito do presente trabalho é o de aprofundar a análise das deficiências do que tem sido denominado como “Método de Gauss”. Em particular, dado que as sentenças judiciais costumam não alterar os valores numéricos das taxas contratuais de juros, substituindo tão somente o regime de juros compostos, que está implícito na Tabela Price, pela peculiar variante do regime de juros simples que está subjacente ao que se chama de “Método de Gauss”, buscar-se-á considerar a questão do ponto de vista do financiador.
Resumo:
LEÃO, Adriano de Castro; DÓRIA NETO, Adrião Duarte; SOUSA, Maria Bernardete Cordeiro de. New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM). Computers in Biology and Medicine, v. 39, p. 853-859, 2009
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed