942 resultados para Gases -- Absorption and adsorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and synthesis of biomaterials covers a growing number of biomedical applications. The use of biomaterials in biological environment is associated with a number of problems, the most important of which is biocompatabUity. If the implanted biomaterial is not compatible with the environment, it will be rejected by the biological site. This may be manifested in many ways depending on the environment in which it is used. Adsorption of proteins takes place almost instantaneously when a biomaterial comes into contact with most biological fluids. The eye is a unique body site for the study of protein interactions with biomaterials, because of its ease of access and deceptive complexity of the tears. The use of contact lenses for either vision correction and cosmetic reasons or as a route for the controlled drug delivery, has significantly increased in recent years. It is relatively easy to introduce a contact lens Into the tear fluid and remove after a few minutes without surgery or trauma to the patient. A range of analytical techniques were used and developed to measure the proteins absorbed to some existing commercial contact lens materials and also to novel hydrogels synthesised within the research group. Analysis of the identity and quantity of proteins absorbed to biomaterials revealed the importance of many factors on the absorption process. The effect of biomaterial structure, protein nature in terms of size. shape and charge and pH of the environment on the absorption process were examined in order to determine the relative up-take of tear proteins. This study showed that both lysozyme and lactoferrin penetrate the lens matrix of ionic materials. Measurement of the mobility and activity of the protein deposited into the surface and within the matrix of ionic lens materials demonstrated that the mobility is pH dependent and, within the experimental errors, the biological activity of lysozyme remained unchanged after adsorption and desorption. The study on the effect of different monomers copolymerised with hydroxyethyl methacrylate (HEMA) on the protein up-take showed that monomers producing a positive charge on the copolymer can reduce the spoilation with lysozyme. The studies were extended to real cases in order to compare the patient dependent factors. The in-vivo studies showed that the spoilation is patient dependent as well as other factors. Studies on the extrinsic factors such as dye used in colour lenses showed that the addition of colourant affects protein absorption and, in one case, its effect is beneficial to the wearer as it reduces the quantity of the protein absorbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model has been developed for predicting the spectral distribution of solar radiation incident on a horizontal surface. The solar spectrum in the wavelength range 0.29 to 4.0 micrometers has been divided in 144 intervals. Two variables in the model are the atmospheric water vapour content and atmospheric turbidity. After allowing for absorption and scattering in the atmosphere, the spectral intensity of direct and diffuse components of radiation are computed. When the predicted radiation levels are compared with the measured values for the total radiation and the values with glass filters RG715, RG630 and OG530, a close agreement (± 5%) has been achieved under clear sky conditions. A solar radiation measuring facility, close to the centre of Birmingham, has been set up utilising a microcomputer based data logging system. A suite of computer programs in the BASIC programming language has been developed and extensively tested for solar radiation data, logging, analysis and plotting. Two commonly used instruments, the Eppley PSP pyranometer and the Kipp and Zonen CM5 pyranometer, have been compared under different experimental conditions. Three models for computing the inclined plane irradiation, using total and diffuse radiation on a horizontal surface, have been tested for Birmingham. The anisotropic-alI-sky model, proposed by Klucher, provides a good agreement between the measured and the predicted radiation levels. Measurements of solar spectral distribution, using glass filters, are also reported for a number of inclines facing South.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noradrenaline was found to significantly stimulate fluid and Na absorption across everted sacs of rat jejunum. Of a number of a1, and 2-adrenoceptor antagonists tested only prazosin significantly inhibited the stimulant effect of noradrenaline and further experiments revealed an antiabsorptive effect of prazosin alone. Theophylline reduced jejunal fluid and Na absorption and this effect was not reversed by 2-adrenoceptor stimulation in contrast to previous findings in vivo. Evidence suggests the everted sac preparation is not appropriate to the study of intestinal fluid and electrolyte transport. The investigation of Jejunal ion transport in vitro was continued using an Ussing chamber preparation. Selective 2-adrenoceptor stimulation was found to depress electrogenic anion secretion, as neurotoxin tetrodotoxin indicated that this was a direct epithelial effect. 2-adrenoceptor agonists have considerable therapeutic value as antisecretory agents and the model of rat jejunum in vitro represents a convenient experimental model for research in this area. The selective 2-adrenoceptor antagonist ICI 118551 decreased basal SCC and inhibited increases in SCC in response to isoprenaline or salbutamol indicating the presence of a 2-adrenoceptor mechanism mediating both secretory tone and increases in secretory processes. Many intestinal secretagogues elicit electrolyte secretion via the stimulation of intramural secretory nervous pathways. If these pathways involve the activation of 2-adrenoceptorsthe 2-adrenoceptor antagonists may be useful in the treatment of diarrhoeal diseases. A single pass lumen perfusion technique was used to investigate possible sympathetic tone over colonic fluid and electrolyte absorption in the rat colon in vivo. The technique employed appeared to lack the necessary resolution for this study and alternative approaches are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological advances have resulted in the production of safe subunit and synthetic small peptide vaccines. Unfortunately, these vaccines are weakly or non-immunogenic in the absence of an immunological adjuvant (agents that can induce strong immunity to antigens). In addition, in order to prevent and/or control infection at the mucosal surface, stimulation of the mucosal immune system is essential. This may be achieved via the common mucosal immune system by exposure to antigen at a mucosal surface remote from the area of infection. Initial studies investigated the potential of multiple emulsions in effecting oral absorption and the subsequent immune responses to a lipopolysaccharide vaccine (LPS) after immunisation. Nasal delivery of LPS was carried out in parallel work using either aqueous solution or gel formulations. Tetanus toxoid vaccine in simple solution was delivered to guinea pigs as free antigen or entrapped in DSPC liposomes. In addition, adsorbed tetanus toxoid vaccine was delivered nasally free or in an aerosil gel formulation. This work was extended to investigate guinea pigs immunised by various mucosal routes with a herpes simplex virus subunit vaccine prepared from virus infected cells and delivered in gels, multiple emulsions and liposomes. Comparable serum antibody responses resulted but failed to produce enhanced protection against vaginal challenge when compared to subcutaneous immunisation with alhydrogel adjuvanted vaccine. Thus, immunisation of the mucosal surface by these methods may have been inadequate. These studies were extended in an attempt to protect against HSV genital challenge by construction of an attenuated Salmonella typhimurium HWSH aroA mutant expressing a cloned glycoprotein D-l gene fused to the Es-cherichia coli lac z promoter. Preliminary work on the colonisation of guinea pigs with S. typhimurium HWSH aroA mutants were carried out, with the aim of using the guinea pig HSV vaginal model to investigate protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fossil arthropod Class Trilobita is characterised by the possession of a highly mineralised dorsal exoskeleton with an incurved marginal flange (doublure). This cuticle is usually the only part of the organism to be preserved. Despite the common occurrence of trilobites in Palaeozoic sediments, the original exoskeletal mineralogy has not been determined previously. Petrographic data involving over seventy trilobite species, ranging in age from Cambrian to Devonian, together with atomic absorption and stable isotope analyses, indicate a primary low-magnesian calcite composition. Trilobite cuticles exhibit a variety of preservational textures which are related to the different diagenetic realms through which they have passed. A greater knowledge of post-depositional processes and the specific features they produce, has enabled post-mortem artefacts to be distinguished from primary cuticular microstructures. Alterations of the cuticle can either enhance or destroy primary features, and their effects are best observed in thin-sections, both under transmitted light and cathodoluminescence. Well-preserved trilobites often retain primary microstructures such as laminations, canals, and tubercles. These have been examined in stained thin-sections and by scanning electron microscopy, from as wide a range of trilobites as possible. Construction of sensory field maps has shown that although the basic organisation of the exoskeleton is the same in all trilobites, the types of microstructures found, and their distribution is species-specific. The composition, microstructure, and architecture of the trilobite exoskeleton have also been studied from a biomechanical viewpoint. Total cuticle thickness, and the relative proportions of the different layers, together with the overall architecture all affected the mechanical properties of the exoskeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of sane anabolic and naturally-occuring sex steroids on intestinal transport of leucine have been studied in rainbow trout (Sallno gairdneri), in vivo (gut perfusion), and in vitro (everted gut sacs or intestinal strips). Administration of 17a-methyltestosterone (Mr) by injection for a prolo03ed period of time, enhanced intestinal transport and accumulation of leucine. 11-ketotestosterone (KT) or MT treatment in vitro, by direct addition to incubation media, elicited significant short-term increases in active transport of leucine, without effecting intestinal accumulation. Luminal administration of Mr in vivo similarly elicited short-term responses, without effecting leucine accumulation in the intestine or other peripheral tissues. However; neither MT nor KT significantly affected intestinal transport of water in trout. Although long term injection of oestradiol (E2) enhanced intestinal transport and accumulation of leucine, E2 treatment in vitro was without effect. Addition of ouabain or 2,4,dinitrophenol in the presence of MT abolished steroid-stimulated leucine transform, in vitro. No significant differences were observed between immature male or female trout with respect to either transport of leucine and water, or intestinal granular cell density. However, 'apparent' Na+ absorption and percentage fold height were higher in females, while total intestinal thickness and enterocyte heights were greater in males. These sex differences were essentially abolished. after gonadectany. It is suggested that the short-term effects of the androgenic steroids might be partly mediated through increased activity of Na+,K+,ATPase, and that steroid-induced growth promotion in fish may,to sane extent, be a consequence of enhanced efficiency of intestinal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brewers spent grain (BSG) is a widely available feedstock representing approximately 85% of the total by-products generated in the brewing industry. This is currently either disposed of to landfill or used as cattle feed due to its high protein content. BSG has received little or no attention as a potential energy resource, but increasing disposal costs and environmental constraints are now prompting the consideration of this. One possibility for the utilisation of BSG for energy is via intermediate pyrolysis to produce gases, vapours and chars. Intermediate pyrolysis is characterised by indirect heating in the absence of oxygen for short solids residence times of a few minutes, at temperatures of 350-450 °C. In the present work BSG has been characterised by chemical, proximate, ultimate and thermo-gravimetric analysis. Intermediate pyrolysis of BSG at 450 °C was carried out using a twin coaxial screw reactor known as Pyroformer to give yields of char 29%, 51% of bio-oil and 19% of permanent gases. The bio-oil liquid was found to separate in to an aqueous phase and organic phase. The organic phase contained viscous compounds that could age over time leading to solid tars that can present problems in CHP application. The quality of the pyrolysis vapour products before quenching can be upgraded to achieve much improved suitability as a fuel by downstream catalytic reforming. A Bench Scale batch pyrolysis reactor has then been used to pyrolyse small samples of BSG under a range of conditions of heating rate and temperature simulating the Pyroformer. A small catalytic reformer has been added downstream of the reactor in which the pyrolysis vapours can be further cracked and reformed. A commercial reforming nickel catalyst was used at 500, 750 and 850 °C at a space velocity about 10,000 L/h with and without the addition of steam. Results are presented for the properties of BSG, and the products of the pyrolysis process both with and without catalytic post-processing. Results indicate that catalytic reforming produced a significant increase in permanent gases mainly (H2 and CO) with H2 content exceeding 50 vol% at higher reforming temperatures. Bio-oil yield decreased significantly as reforming temperature increased with char remaining the same as pyrolysis condition remained unchanged. The process shows an increase in heating value for the product gas ranging between 10.8-25.2 MJ/m as reforming temperature increased. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new bridge technique for the measurement of the dielectric absorption of liquids and solutions at microwave frequencies has been described and its accuracy assessed. 'l'he dielectric data of the systems studied is discussed in terms of the relaxation processes contributing to the dielectric absorption and the apparent dipole moments. Pyridine, thiophen and furan in solution have a distribution of relaxation times which may be attributed to the small size of the solute molecules relative to the solvent. Larger rigid molecules in solution were characterized by a single relaxation time as would be anticipated from theory. The dielectric data of toluene, ethyl-, isopropyl- and t-butylbenzene as pure liquids and in solution were described by two relaxation times, one identified with molecular re-orientation and a shorter relaxation time.· The subsequent work was investigation of the possible explanations of this short relaxation process. Comparable short relaxation times were obtained from the analysis of the dielectric data of solutions of p-chloro- and p-bromotoluene below 40°C, o- and m-xylene at 25°C and 1-methyl- and 2 methylnaphthalene at 50 C. Rigid molecules of similar shapes and sizes were characterized by a single relaxation time identified with molecular re-orientation. Contributions from a long relaxation process attributed to dipolar origins were reported for solutions of nitrobenzene, benzonitrile and p-nitrotoluene. A short relaxation process of possible dipolar origins contributed to the dielectric absorption of 4-methyl- and 4-t-butylpyridine in cyclohexane at 25°C. It was concluded that the most plausible explanation of the short relaxation process of the alkyl-aryl hydrocarbons studied appears to be intramolecular relaxation about the alkyl-aryl bond. Finally the mean relaxation times of some phenylsubstituted compounds were investigated to evaluate any shortening due to contributions from the process of relaxation about the phenyl-central atom bond. The relaxation times of triphenylsilane and phenyltrimethylsilane were significantly short.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) inhibitors lisinopril and ramipril were selected from EMA/480197/2010 and the potassium-sparing diuretic spironolactone was selected from the NHS specials list for November 2011 drug tariff with the view to produce oral liquid formulations providing dosage forms targeting paediatrics. Lisinopril, ramipril and spironolactone were chosen for their interaction with transporter proteins in the small intestine. Formulation limitations such as poor solubility or pH sensitivity needed consideration. Lisinopril was formulated without extensive development as drug and excipients were water soluble. Ramipril and spironolactone are both insoluble in water and strategies combating this were employed. Ramipril was successfully solubilised using low concentrations of acetic acid in a co-solvent system and also via complexation with hydroxypropyl-β-cyclodextrin. A ramipril suspension was produced to take formulation development in a third direction. Spironolactone dosages were too high for solubilisation techniques to be effective so suspensions were developed. A buffer controlled pH for the sensitive drug whilst a precisely balanced surfactant and suspending agent mix provided excellent physical stability. Characterisation, stability profiling and permeability assessment were performed following formulation development. The formulation process highlighted current shortcomings in techniques for taste assessment of pharmaceutical preparations resulting in early stage research into a novel in vitro cell based assay. The formulations developed in the initial phase of the research were used as model formulations investigating microarray application in an in vitro-in vivo correlation for carrier mediated drug absorption. Caco-2 cells were assessed following transport studies for changes in genetic expression of the ATP-binding cassette and solute carrier transporter superfamilies. Findings of which were compared to in vitro and in vivo permeability findings. It was not possible to ascertain a correlation between in vivo drug absorption and the expression of individual genes or even gene families, however there was a correlation (R2 = 0.9934) between the total number of genes with significantly changed expression levels and the predicted human absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study experimentally investigated methyl chloride (MeCl) purification method using an inhouse designed and built volumetric adsorption/desorption rig. MeCl is an essential raw material in the manufacture of silicone however all technical grades of MeCl contain concentrations (0.2 - 1.0 % wt) of dimethyl ether (DME) which poison the process. The project industrial partner had previously exhausted numerous separation methods, which all have been deemed not suitable for various reasons. Therefore, adsorption/desorption separation was proposed in this study as a potential solution with less economic and environmental impact. Pure component adsorption/desorption was carried out for DME and MeCl on six different adsorbents namely: zeolite molecular sieves (types 4 Å and 5 Å); silica gels (35-70 mesh, amorphous precipitated, and 35-60 mesh) and granular activated carbon (type 8-12 mesh). Subsequent binary gas mixture adsorption in batch and continuous mode was carried out on both zeolites and all three silica gels following thermal pre-treatment in vacuum. The adsorbents were tested as received and after being subjected to different thermal and vacuum pre-treatment conditions. The various adsorption studies were carried out at low pressure and temperature ranges of 0.5 - 3.5 atm and 20 - 100 °C. All adsorbents were characterised using Brunauer Emmett Teller (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) to investigate their physical and chemical properties. The well-known helium (He) expansion method was used to determine the empty manifold and adsorption cell (AC) regions and respective void volumes for the different adsorbents. The amounts adsorbed were determined using Ideal gas laws via the differential pressure method. The heat of adsorption for the various adsorbate-adsorbent (A-S) interactions was calculated using a new calorimetric method based on direct temperature measurements inside the AC. Further adsorption analysis included use of various empirical and kinetic models to determine and understand the behaviour of the respective interactions. The gas purification behaviour was investigated using gas chromatography and mass spectroscopy (GC-MC) analysis. Binary gas mixture samples were syringed from the manifold iii and AC outlet before and after adsorption/desorption analysis through manual sample injections into the GC-MS to detect and quantify the presence of DME and ultimately observe for methyl chloride purification. Convincing gas purification behaviour was confirmed using two different GC columns, thus giving more confidence on the measurement reliability. From the single pure component adsorption of DME and MeCl on the as received zeolite 4A subjected to 1 h vacuum pre-treatment, both gases exhibited pseudo second order adsorption kinetics with DME exhibiting a rate constant nearly double that of MeCl thus suggesting a faster rate of adsorption. From the adsorption isotherm classification both DME and MeCl exhibited Type II and I adsorption isotherm classifications, respectively. The strength of bonding was confirmed by the differential heat of adsorption measurement, which was found to be 23.30 and 10.21 kJ mol-1 for DME and MeCl, respectively. The former is believed to adsorb heterogeneously through hydrogen bonding whilst MeCl adsorbs homogenously via van der Waal’s (VDW) forces. Single pure component adsorption on as received zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) resulted in similar adsorption/desorption behaviour in similar quantities (mol kg-1). The adsorption isotherms for DME and MeCl on zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) and activated carbon 8-12 exhibited Type I classifications, respectively. Experiments on zeolite 5A indicated that DME adsorbed stronger, faster and with a slightly stronger strength of interaction than MeCl but in lesser quantities. On the silica gels adsorbents, DME exhibited a slightly greater adsorption capacity whilst adsorbing at a similar rate and strength of interaction compared to MeCl. On the activated carbon adsorbent, MeCl exhibited the greater adsorption capacity at a faster rate but with similar heats of adsorption. The effect of prolonged vacuum (15 h), thermal pre-treatment (150 °C) and extended equilibrium time (15 min) were investigated for the adsorption behaviour of DME and MeCl on both zeolites 4A and 5A, respectively. Compared to adsorption on as received adsorbents subjected to 1 h vacuum the adsorption capacities for DME and MeCl were found to increase by 1.95 % and 20.37 % on zeolite 4A and by 4.52 % and 6.69 % on zeolite 5A, respectively. In addition the empirical and kinetic models and differential heats of adsorption resulted in more definitive fitting curves and trends due to the true equilibrium position of the adsorbate with the adsorbent. Batch binary mixture adsorption on thermally and vacuum pre-treated zeolite 4A demonstrated purification behaviour of all adsorbents used for MeCl streams containing DME impurities, with a concentration as low as 0.66 vol. %. The GC-MS analysis showed no DME detection for the tested concentration mixtures at the AC outlet after 15 or 30 min, whereas MeCl was detectable in measurable amounts. Similar behaviour was also observed when carrying out adsorption in continuous mode. On the other hand, similar studies on the other adsorbents did not show such favourable MeCl purification behaviour. Overall this study investigated a wide range of adsorbents (zeolites, silica gels and activated carbon) and demonstrated for the first time potential to purify MeCl streams containing DME impurities using adsorption/desorption separation under different adsorbent pre-treatment and adsorption operating conditions. The study also revealed for the first time the adsorption isotherms, empirical and kinetic models and heats of adsorption for the respective adsorbentsurface (A-S) interactions. In conclusion, this study has shown strong evidence to propose zeolite 4A for adsorptive purification of MeCl. It is believed that with a technical grade MeCl stream competitive yet simultaneous co-adsorption of DME and MeCl occurs with evidence of molecular sieiving effects whereby the larger DME molecules are unable to penetrate through the adsorbent bed whereas the smaller MeCl molecules diffuse through resulting in a purified MeCl stream at the AC outlet. Ultimately, further studies are recommended for increased adsorption capacities by considering wider operating conditions, e.g. different adsorbent thermal and vacuum pre-treatment and adsorbing at temperatures closer to the boiling point of the gases and different conditions of pressure and temperature.