518 resultados para Gametophytic blade
Resumo:
In the case of surgical scalpels, blade retraction and disposability have been incorporated into a number of commercial designs to address sharps injury and infection transmission issues. Despite these new designs, the traditional metal reusable scalpel is still extensively used and this paper attempts to determine whether the introduction of safety features has compromised the ergonomics and so potentially the take-up of the newer designs. Examples of scalpels have been analysed to determine the ergonomic impact of these design changes. Trials and questionnaires were carried out using both clinical and non-clinical user groups, with the trials making use of assessment of incision quality, cutting force, electromyography and video monitoring. The results showed that ergonomic performance was altered by the design changes and that while these could be for the worse, the introduction of safety features could act as a catalyst to encourage re-evaluation of the ergonomic demands of a highly traditional product.
Resumo:
We have used a recently developed x-ray structural microscopy technique to make nondestructive, submicron-resolution measurements of the deformation microstructure below a 100mN maximum load Berkovich nanoindent in single crystal Cu. Direct observations of plastic deformation under the indent were obtained using a ~0.5 µm polychromatic microbeam and diffracted beam depth profiling to make micron-resolution spatially-resolved x-ray Laue diffraction measurements. The local lattice rotations underneath the nanoindent were found to be heterogeneous in nature as revealed by geometrically necessary dislocation (GND) densities determined for positions along lines beneath a flat indent face and under the sharp Berkovich indent blade edges. Measurements of the local rotation-axes and misorientation-angles along these lines are discussed in terms of crystallographic slip systems.
Resumo:
The article presents a new type of logs merging tool for multiple blade telecommunication systems based on the development of a new approach. The introduction of the new logs merging tool (the Log Merger) can help engineers to build a processes behavior timeline with a flexible system of information structuring used to assess the changes in the analyzed system. This logs merging system based on the experts experience and their analytical skills generates a knowledge base which could be advantageous in further decision-making expert system development. This paper proposes and discusses the design and implementation of the Log Merger, its architecture, multi-board analysis of capability and application areas. The paper also presents possible ways of further tool improvement e.g. - to extend its functionality and cover additional system platforms. The possibility to add an analysis module for further expert system development is also considered.
Resumo:
A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis.
Resumo:
In this paper, we report on a new method to cleave polymer optical fibre. The most common way to cut a polymer optical fibre is chopping it with a razor blade; however, in this approach both the fibre and the blade must be preheated in order to turn the material ductile, and thus, prevent crazing. In this paper, we make use of the temperature-time equivalence in polymers to replace the use of heating by an increase of the cleaving time and use a sawing motion to reduce fibre end face damage. In this way, the polymer fibre can be cleaved at room temperature in seconds with the resulting end face being of similar quality to those produced by more complex and expensive heated systems.
Resumo:
Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.
Resumo:
Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.
Resumo:
Aimed to identify, for assessing the tillering dynamics and morphogenesis , strategy (s ) suitable ( s) defoliation management to optimize the appearance of tillers and biomass of Urochloa Brizantha syn. Brachiaria brizantha cv. Marandu ( marandugrass ) throughout the year. The experiment was conducted from January 2013 to May 2014 were studied three strategies defoliation: Marandugrass with 30 cm throughout the experimental period (constant height); Marandugrass 15 cm in winter, the spring 30 cm and 45 cm in summer (increasing height); and Marandugrass 45 cm in winter, the spring 30 cm and 15 cm in summer (descending height). The experimental design was completely randomized in a split plot in time, with four replications. In winter, in the spring and summer, the following variables were calculated: appearance rate (TApP), mortality (TMoP) and survival (TSoP) of tillers, balance (BAL) between TApP and TMoP, stability index (IE) numbers of tillers and leaf elongation rates and stem, length of leaf blade and stem, leaf senescence rate, phyllochron and duration of life of the sheet. The TAPP was higher in the early spring and summer. For TMoP, the highest values were in the late spring and summer. The balance between TApP and TMoP was negative in winter and late spring, regardless of defoliation strategy. There was no difference in IE between the heights of the canopy during winter and late spring .. The number of tillers was higher in early spring and summer and lower in winter and late spring. The defoliation strategies have not changed phyllochron, leaf elongation rate. In spring and summer, there were increases in the rates of appearance, elongation and leaf senescence and, furthermore, decreased life span and phyllochron sheet. The plant height with increasing showed a lower rate of senescence and lower culm length in the spring. To increase the number of tillers marandu, it is advantageous to handle the plant with increasing height, ie, 15 cm in autumn and winter, the spring 30 cm and 45 cm in summer.The maintaining of B. brizantha cv. Marandu with fixed height of 30 cm or with variations between 15 and 45cm from the fall/winter to summer, does not influence the appearance and the growth of leaves per tiller, which indicates great flexibility on management defoliation in this forage plant.
Resumo:
A method of accurately controlling the position of a mobile robot using an external Large Volume Metrology (LVM) instrument is presented in this paper. Utilizing a LVM instrument such as the laser tracker in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real- Time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitization scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
This study examined the effect of a spanwise angle of attack gradient on the growth and stability of a dynamic stall vortex in a rotating system. It was found that a spanwise angle of attack gradient induces a corresponding spanwise vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the blade. Specifically, when modelling the angle of attack gradient experienced by a wind turbine at the 30% span position during a gust event, the spanwise vorticity gradient was aligned such that circulation was transported from areas of high circulation to areas of low circulation, increasing the local dynamic stall vortex growth rate, which corresponds to an increase in the lift coefficient, and a decrease in the local vortex stability at this point. Reversing the relative alignment of the spanwise vorticity gradient and spanwise flow results in circulation transport from areas of low circulation generation to areas of high circulation generation, acting to reduce local circulation and stabilise the vortex. This circulation redistribution behaviour describes a mechanism by which the fluctuating loads on a wind turbine are magnified, which is detrimental to turbine lifetime and performance. Therefore, an understanding of this phenomenon has the potential to facilitate optimised wind turbine design.
Resumo:
With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.
Colonialism, political unconscious and cognitive mapping in the space of the film "Captain Phillips"
Resumo:
The purpose of this article has been made through a Marxist analysis of the US film "Captain Phillips" (PaulGreengrass, 2013), based on a true story. I have found how the evolution of capitalism in the West continuesto consolidate the belief reified in a historical and geographical superiority of the political and socioeconomicwestern models regarding Africa and Asia lowers models. At the same time, through categories like dialecticalmaterialism, criticism of diffusionist theory and application of cognitive mapping to large geopoliticalspaces located in most poor areas of the world, I have realized a remark about currently being articulatingthe political unconscious of working class in rich countries and the poor in poor countries, establishing arelationship between the ideological representation that takes an individual from his historical reality (ona scale that moves from local to global), and how he has developed a mental ability to escape of the responsibilityto make a critical review of what's happening around him in all areas. Finally, through physicalspace captured in the film, I have realized a materialist critique of globalized business process that takesplace through the carriage of goods, outlining spatial and cognitively limits of the mentality of our time, bothamong "winners"as among the "losers", based on the spatial movement of capital.
Resumo:
The goal of this work is to present an efficient CAD-based adjoint process chain for calculating parametric sensitivities (derivatives of the objective function with respect to the CAD parameters) in timescales acceptable for industrial design processes. The idea is based on linking parametric design velocities (geometric sensitivities computed from the CAD model) with adjoint surface sensitivities. A CAD-based design velocity computation method has been implemented based on distances between discrete representations of perturbed geometries. This approach differs from other methods due to the fact that it works with existing commercial CAD packages (unlike most analytical approaches) and it can cope with the changes in CAD model topology and face labeling. Use of the proposed method allows computation of parametric sensitivities using adjoint data at a computational cost which scales with the number of objective functions being considered, while it is essentially independent of the number of design variables. The gradient computation is demonstrated on test cases for a Nozzle Guide Vane (NGV) model and a Turbine Rotor Blade model. The results are validated against finite difference values and good agreement is shown. This gradient information can be passed to an optimization algorithm, which will use it to update the CAD model parameters.
Resumo:
In many countries wind energy has become an indispensable part of the electricity generation mix. The opportunity for ground based wind turbine systems are becoming more and more constrained due to limitations on turbine hub heights, blade lengths and location restrictions linked to environmental and permitting issues including special areas of conservation and social acceptance due to the visual and noise impacts. In the last decade there have been numerous proposals to harness high altitude winds, such as tethered kites, airfoils and dirigible based rotors. These technologies are designed to operate above the neutral atmospheric boundary layer of 1,300 m, which are subject to more powerful and persistent winds thus generating much higher electricity capacities. This paper presents an in-depth review of the state-of-the-art of high altitude wind power, evaluates the technical and economic viability of deploying high altitude wind power as a resource in Northern Ireland and identifies the optimal locations through considering wind data and geographical constraints. The key findings show that the total viable area over Northern Ireland for high altitude wind harnessing devices is 5109.6 km2, with an average wind power density of 1,998 W/m2 over a 20-year span, at a fixed altitude of 3,000 m. An initial budget for a 2MW pumping kite device indicated a total cost £1,751,402 thus proving to be economically viable with other conventional wind-harnessing devices.
Resumo:
Current trends in the automotive industry have placed increased importance on engine downsizing for passenger vehicles. Engine downsizing often results in reduced power output and turbochargers have been relied upon to restore the power output and maintain drivability. As improved power output is required across a wide range of engine operating conditions, it is necessary for the turbocharger to operate effectively at both design and off-design conditions. One off-design condition of considerable importance for turbocharger turbines is low velocity ratio operation, which refers to the combination of high exhaust gas velocity and low turbine rotational speed. Conventional radial flow turbines are constrained to achieve peak efficiency at the relatively high velocity ratio of 0.7, due the requirement to maintain a zero inlet blade angle for structural reasons. Several methods exist to potentially shift turbine peak efficiency to lower velocity ratios. One method is to utilize a mixed flow turbine as an alternative to a radial flow turbine. In addition to radial and circumferential components, the flow entering a mixed flow turbine also has an axial component. This allows the flow to experience a non-zero inlet blade angle, potentially shifting peak efficiency to a lower velocity ratio when compared to an equivalent radial flow turbine.
This study examined the effects of varying the flow conditions at the inlet to a mixed flow turbine and evaluated the subsequent impact on performance. The primary parameters examined were average inlet flow angle, the spanwise distribution of flow angle across the inlet and inlet flow cone angle. The results have indicated that the inlet flow angle significantly influenced the degree of reaction across the rotor and the turbine efficiency. The rotor studied was a custom in-house design based on a state-of-the-art radial flow turbine design. A numerical approach was used as the basis for this investigation and the numerical model has been validated against experimental data obtained from the cold flow turbine test rig at Queen’s University Belfast. The results of the study have provided a useful insight into how the flow conditions at rotor inlet influence the performance of a mixed flow turbine.