970 resultados para GUARD HONEYBEES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect cuticular hydrocarbons including relatively non-volatile chemicals play important roles in cuticle protection and chemical communication. The conventional procedures for extracting cuticular compounds from insects require toxic solvents, or non-destructive techniques that do not allow storage of subsequent samples, such as the use of SPME fibers. In this study, we describe and tested a non-lethal process for extracting cuticular hydrocarbons with styrene-divinylbenzene copolymers, and illustrate the method with two species of bees and one species of beetle. The results demonstrate that these compounds can be efficiently trapped by ChromosorbA (R) (SUPELCO) and that this method can be used as an alternative to existing methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most prominent pathways are related to oxidative stress, mitochondrial electron transport chain, vacuolar acidification, regulation of macroautophagy associated with protein target to vacuole, cellular response to starvation, and negative regulation of transcription from RNA polymerase II promoter. Our work emphasizes again the importance of S. cerevisiae as a model system to understand at molecular level the mechanism whereby propolis causes cell death in this organism at the concentration herein tested. Our study is the first one that investigates systematically by using functional genomics how propolis influences and modulates the mRNA abundance of an organism and may stimulate further work on the propolis-mediated cell death mechanisms in fungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research is an itinerary from the discovery of the force of Love in the Song of Songs, where the human figure is given entirely through aesthetics, right to the agony of the other's death, where ethics, the "Severe Name of Love", is the only guard left; a journey through the contradictions of human mind, that, though aiming at Good, Beauty, Happiness, is completely immersed into the darkness of its finiteness and into evil. The consciousness leads to the creation of a world whose essential prefiguration is the Beauty; whose fundamental expression is the Good. Ethics must translate itself in responsability towards the other, in the history. This immersion into reality preserves the aesthetic and ethic dimension from the temptation of absolutizing the finite. In this work, the proximity and divergence between the aesthetic and ethic dimension is analysed, with reference to significant moments of the philosophical reflection, namely in the thought of Ingarden, Tishner and Levinas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anhidrotic Ectodermal Dysplasia (EDA), is the most frequent form among Ectodermal Dysplasias, hereditary genetic disorders causing ectodermal appendages defective development. Indeed, EDA is characterized by defective formation of hair follicles, sweat glands and teeth both in human patients and animals. EDA, the gene mutated in Anhidrotic Ectodermal Dysplasia, encodes Ectodysplasin, a TNF family member that activates NF-kB mediated transcription. This disease can occur with mutations in other EDA-NF-kB pathway members, as EDA receptor, EDAR and its adapter, EDARADD. Moreover, mutations in TRAF6, NEMO, IKB and NF-kBs genes are responsible for Immunodeficiency associated EDA (EDA-ID). Several molecules, as SHH, WNT/DKK, BMP and LTβ, have already been reported to be EDA pathway regulators or effectors although the knowledge of the full spectrum of EDA targets remains incomplete. During the first part of the research project a gene expression analysis was performed in primary keratinocytes from Wild-type and Tabby (EDA model mouse) mice to identify novel EDA target genes. Earlier expression profiling at various developmental time points in Tabby and Wild-type mouse skin reported genes differentially expressed in the two samples and, to increase the resolution to find genes whose expression may be restricted to epidermal cells, the study was extended to primary keratinocyte cultures established from E19 Wild-type and Tabby skin. Using microarrays bearing 44,000 gene probes, we found 385 “preliminary candidate” genes whose expression was significantly affected by Eda defect. By comparing expression profiles to those from Eda-A1 (where Eda-A1 is highly expressed) transgenic skin, we restricted the list to 38 “candidate EDA targets”, 14 of which were already known to be expressed in hair follicles or epidermis. This work confirmed expression changes for 3 selected genes, Tbx1, Bmp7, and Jag1, both in primary keratinocytes and in Wild-type and Tabby whole skin, by Q-PCR and Western blotting analyses. Thus, this study detected novel candidate pathways downstream of EDA. In the second part of the research project, plasmid constructs were produced and analyzed to create a transgenic mouse model for Immunodeficiency associated EDA disease (XL-EDA-ID). In particular, plasmids containing mouse Wild-type and mutated Nemo cDNA under K-17 epidermis-specific promoter control and a Flag tag, were prepared, on the way to confine transgene expression to mice epidermis and to determine EDA phenotype without immunodeficiency for a comparison to Tabby model phenotype. EDA-ID mutations reported in patients and selected for this study are: C417R (C409R in mouse), causing Zinc Finger protein domain destabilization and A288G (A282G in mouse) affecting oligomerization of the protein. Moreover, the ex-novo mutation, ZnF, C-terminal Zinc Finger domain deletion, was tested. Thus, the constructs were analyzed by transient transfection, Western blotting and luciferase assays techniques, detecting Nemo Wild-type and mutant protein products and residue NF-kB activity in presence of mutants, after TNF stimulation. In particular, MEF_Nemo-/- cell line was used to monitor NF-kB activity without endogenous Nemo gene. Results show reduced NF-kB activity in presence of mutated Nemo forms compared to Wild-type: 81% for A282G (A288G in human); 24% for C409R (C417R in human); 15% for ZnF. C409R mutation (C417R in human), reported in 6 EDA-ID human patients, was selected to prepare transgenic model mouse. Mice (white, FVP) born following K17-promoter-Flag-Nemo_C409R plasmid region pronuclear injection, were analyzed for the transgene presence in the genotype and a preliminar examination of their phenotype was performed. In particular, one mouse showed considerable coat defects if compared to Wild-type mice. This preliminar analysis suggests a possible influence of Nemo mutant over-expression in epidermis without immunodeficiency. Still, more microscopic studies to analyze hair subtypes, Guard, Awl and Zigzag (usually alterated inTabby mouse model), Immunohistochemistry experiments to detect epidermis restricted Nemo expression and sweat glands analysis, will follow. This and other transgene positive mice will be crossed with black mice C57BL6 to obtain at least two indipendent agouti lines to analyze. Theses mice will be used in EDA target genes detection through microarrays. Following, plasmid constructs containing other Nemo mutant forms (A282G and ZnF) might be studied by the same experimental approaches to prepare more transgenic model mice to compare to Nemo_C409R and Tabby mouse models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inbreeding can lead to a fitness reduction due to the unmasking of deleterious recessive alleles and the loss of heterosis. Therefore, most sexually reproducing organisms avoid inbreeding, often by disperal. Besides the avoidance of inbreeding, dispersal lowers intraspecific competition on a local scale and leads to a spreading of genotypes into new habitats. In social insects, winged reproductives disperse and mate during nuptial flights. Therafter, queens independently found a new colony. However, some species also produce wingless sexuals as an alternative reproductive tactic. Wingless sexuals mate within or close to their colony and queens either stay in the nest or they found a new colony by budding. During this dependent colony foundation, wingless queens are accompanied by a fraction of nestmate workers. The production of wingless reproductives therefore circumvents the risks associated with dispersal and independent colony foundation. However, the absence of dispersal can lead to inbreeding and local competition.rnIn my PhD-project, I investigated the mating biology of Hypoponera opacior, an ant that produces winged and wingless reproductives in a population in Arizona. Besides the investigation of the annual reproductive cycle, I particularly focused on the consequences of wingless reproduction. An analysis of sex ratios in wingless sexuals should reveal the relative importance of local resource competition among queens (that mainly compete for the help of workers) and local mate competition among males. Further, sexual selection was expected to act on wingless males that were previously found to mate with and mate-guard pupal queens in response to local mate competition. We studied whether males are able to adapt their mating behaviour to the current competitive situation in the nest and which traits are under selection in this mating situation. Last, we investigated the extent and effects of inbreeding. As the species appeared to produce non-dispersive males and queens quite frequently, we assumed to find no or only weak negative effects of inbreeding and potentially mechanisms that moderate inbreeding levels despite frequent nest-matings.rnWe found that winged and wingless males and queens are produced during two separate seasons of the year. Winged sexuals emerge in early summer and conduct nuptial flights in July, when climate conditions due to frequent rainfalls lower the risks of dispersal and independent colony foundation. In fall, wingless sexuals are produced that reproduce within the colonies leading to an expansion on the local scale. The absence of dispersal during this second reproductive season resulted in a local genetic population viscosity and high levels of inbreeding within the colonies. Male-biased sex ratios in fall indicated a greater importance of local resource competition among queens than local mate competition among males. Males were observed to adjust mate-guarding durations to the competitive situation (i.e. the number of competing males and pupae) in the nest, an adaptation that helps maximising their reproductive success. Further, sexual selection was found to act on the timing of emergence as well as on body size in these males, i.e. earlier emerging and larger males show a higher mating success. Genetic analyses revealed that wingless males do not actively avoid inbreeding by choosing less related queens as mating partners. Further, we detected diploid males, a male type that is produced instead of diploid females if close relatives mate. In contrast to many other Hymenopteran species, diploid males were here viable and able to sire sterile triploid offspring. They did not differ in lifespan, body size and mating success from “normal” haploid males. Hence, diploid male production in H. opacior is less costly than in other social Hymenopteran species. No evidence of inbreeding depression was found on the colony level but more inbred colonies invested more resources into the production of sexuals. This effect was more pronounced in the dispersive summer generation. The increased investment in outbreeding sexuals can be regarded as an active strategy to moderate the extent and effects of inbreeding. rnIn summary, my thesis describes an ant species that has evolved alternative reproductive tactics as an adaptation to seasonal environmental variations. Hereby, the species is able to maintain its adaptive mating system without suffering from negative effects due to the absence of dispersal flights in fall.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project was born with the aim of developing an environmentally and financially sustainable process to dispose of end-life tires. In this perspective was devised an innovative static bed batch pilot reactor where pyrolysis can be carried out on the whole tires in order to recover energy and materials and simultaneously save the energy costs of their shredding. The innovative plant is also able to guarantee a high safety of the process thanks to the presence of a hydraulic guard. The pilot plant was used to pyrolyze new and end-life tires at temperatures from 400 to 600°C with step of 50°C in presence of steam. The main objective of this research was to evaluate the influence of the maximum process temperature on yields and chemical-physics properties of pyrolysis products. In addition, in view of a scale-up of the plant in continuous mode, the influence of the nature of several different tires as well as the effects of the aging on the final products were studied. The same pilot plant was also used to carry out pyrolysis on polymeric matrix composites in order to obtain chemical feedstocks from the resin degradation together with the recovery of the reinforcement in the form of fibers. Carbon fibers reinforced composites ad fiberglass was treated in the 450-600°C range and the products was fully characterized. A second oxidative step was performed on the pyrolysis solid residue in order to obtain the fibers in a suitable condition for a subsequent re-impregnation in order to close the composite Life Cycle in a cradle-to-cradle approach. These investigations have demonstrated that steel wires, char, carbon and glass fibers recovered in the prototypal plant as solid residues can be a viable alternative to pristine materials, making use of them to obtain new products with a commercial added value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flowers attract honeybees using colour and scent signals. Bimodality (having both scent and colour) in flowers leads to increased visitation rates, but how the signals influence each other in a foraging situation is still quite controversial. We studied four basic questions: When faced with conflicting scent and colour information, will bees choose by scent and ignore the “wrong” colour, or vice versa? To get to the bottom of this question, we trained bees on scent-colour combination AX (rewarded) versus BY (unrewarded) and tested them on AY (previously rewarded colour and unrewarded scent) versus BX (previously rewarded scent and unrewarded colour). It turned out that the result depends on stimulus quality: if the colours are very similar (unsaturated blue and blue-green), bees choose by scent. If they are very different (saturated blue and yellow), bees choose by colour. We used the same scents, lavender and rosemary, in both cases. Our second question was: Are individual bees hardwired to use colour and ignore scent (or vice versa), or can this behaviour be modified, depending on which cue is more readily available in the current foraging context? To study this question, we picked colour-preferring bees and gave them extra training on scent-only stimuli. Afterwards, we tested if their preference had changed, and if they still remembered the scent stimulus they had originally used as their main cue. We came to the conclusion that a colour preference can be reversed through scent-only training. We also gave scent-preferring bees extra training on colour-only stimuli, and tested for a change in their preference. The number of animals tested was too small for statistical tests (n = 4), but a common tendency suggested that colour-only training leads to a preference for colour. A preference to forage by a certain sensory modality therefore appears to be not fixed but flexible, and adapted to the bee’s surroundings. Our third question was: Do bees learn bimodal stimuli as the sum of their parts (elemental learning), or as a new stimulus which is different from the sum of the components’ parts (configural learning)? We trained bees on bimodal stimuli, then tested them on the colour components only, and the scent components only. We performed this experiment with a similar colour set (unsaturated blue and blue-green, as above), and a very different colour set (saturated blue and yellow), but used lavender and rosemary for scent stimuli in both cases. Our experiment yielded unexpected results: with the different colours, the results were best explained by elemental learning, but with the similar colour set, bees exhibited configural learning. Still, their memory of the bimodal compound was excellent. Finally, we looked at reverse-learning. We reverse-trained bees with bimodal stimuli to find out whether bimodality leads to better reverse-learning compared to monomodal stimuli. We trained bees on AX (rewarded) versus BY (unrewarded), then on AX (unrewarded) versus BY (rewarded), and finally on AX (rewarded) and BY (unrewarded) again. We performed this experiment with both colour sets, always using the same two scents (lavender and rosemary). It turned out that bimodality does not help bees “see the pattern” and anticipate the switch. Generally, bees trained on the different colour set performed better than bees trained on the similar colour set, indicating that stimulus salience influences reverse-learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cannabinoid type 1 (CB1) receptor is involved in a plethora of physiological functions and heterogeneously expressed on different neuronal populations. Several conditional loss-of-function studies revealed distinct effects of CB1 receptor signaling on glutamatergic and GABAergic neurons, respectively. To gain a comprehensive picture of CB1 receptor-mediated effects, the present study aimed at developing a gain-of-function approach, which complements conditional loss-of-function studies. Therefore, adeno-associated virus (AAV)-mediated gene delivery and Cre-mediated recombination were combined to recreate an innovative method, which ensures region- and cell type-specific transgene expression in the brain. This method was used to overexpress the CB1 receptor in glutamatergic pyramidal neurons of the mouse hippocampus. Enhanced CB1 receptor activity at glutamatergic terminals caused impairment in hippocampus-dependent memory performance. On the other hand, elevated CB1 receptor levels provoked an increased protection against kainic acid-induced seizures and against excitotoxic neuronal cell death. This finding indicates the protective role of CB1 receptor on hippocampal glutamatergic terminals as a molecular stout guard in controlling excessive neuronal network activity. Hence, CB1 receptor on glutamatergic hippocampal neurons may represent a target for novel agents to restrain excitotoxic events and to treat neurodegenerative diseases. Endocannabinoid synthesizing and degrading enzymes tightly regulate endocannabinoid signaling, and thus, represent a promising therapeutic target. To further elucidate the precise function of the 2-AG degrading enzyme monoacylglycerol lipase (MAGL), MAGL was overexpressed specifically in hippocampal pyramidal neurons. This genetic modification resulted in highly increased MAGL activity accompanied by a 50 % decrease in 2-AG levels without affecting the content of arachidonic acid and anandamide. Elevated MAGL protein levels at glutamatergic terminals eliminated depolarization-induced suppression of excitation (DSE), while depolarization-induced suppression of inhibition (DSI) was unchanged. This result indicates that the on-demand availability of the endocannabinoid 2-AG is crucial for short-term plasticity at glutamatergic synapses in the hippocampus. Mice overexpressing MAGL exhibited elevated corticosterone levels under basal conditions and an increase in anxiety-like behavior, but surprisingly, showed no changes in aversive memory formation and in seizure susceptibility. This finding suggests that 2 AG-mediated hippocampal DSE is essential for adapting to aversive situations, but is not required to form aversive memory and to protect against kainic acid-induced seizures. Thus, specific inhibition of MAGL expressed in hippocampal pyramidal neurons may represent a potential treatment strategy for anxiety and stress disorders. Finally, the method of AAV-mediated cell type-specific transgene expression was advanced to allow drug-inducible and reversible transgene expression. Therefore, elements of the tetracycline-controlled gene expression system were incorporated in our “conditional” AAV vector. This approach showed that transgene expression is switched on after drug application and that background activity in the uninduced state was only detectable in scattered cells of the hippocampus. Thus, this AAV vector will proof useful for future research applications and gene therapy approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9 5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae The two strains, labelled `Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers (Trigona carbonaria) immediately mummify invading adult small hive beetles (Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like all organisms on the planet, honeybees (Apis mellifera) are susceptible to infection with a wide variety of viruses. These viruses may produce infections with no visible symptoms or may have devastating consequences on both the individual bee and the entire hive. Deformed Wing Virus, a member of the Iflavirus group of viruses, has an RNA genome and has had a particularly important impact on bee health. It can be spread between bees in a several ways – bees can infect each other during feeding or grooming activities, drones can pass the virus to the queen during mating and queens can lay infected eggs. The primary and most devastating way that these viruses are transmitted within and between hives involves a parasitic mite, an animal known ominously as Varroa destructor. The talk will discuss the effect that viruses have on the health and behavior of honeybees and will outline the collaborative research activities of Drs. Evans and Pizzorno over the last 7 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the current research project is to design a successful in-situ hybridization to identify regions within the brains of honeybees where DWV replicates. The localization of the virus in the brains of the bees can draw a connection between CCDand DWV.In conclusion, these results demonstrate that in bees infected with DWV the virus replicates actively in very important regions of the brain, including neuropils that are responsible for vision and olfaction. This means that the virus could adversely affect the vision and olfaction of the honeybees making it difficult for bees to behave normally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Floral scents are important information cues used to organize foraging-related tasks in honeybees. The waggle dance, apart from encoding spatial information about food sources, might facilitate the transfer of olfactory information by increasing the dissipation of volatiles brought back by successful foragers. By assuming that food scents are more intensive on specific body parts of returning foragers, i.e., the posterior legs of pollen foragers and mouthparts of nectar foragers, we quantified the interactions between hive mates and foragers during dances advertising different types of food sources. For natural sources, a higher proportion of hive mates contacted the hind legs of pollen dancers (where the pollen loads were located) with their heads compared to non-pollen dancers. On the other hand, the proportion of head-to-head contacts was higher for non-pollen foragers during the waggle runs. When the food scent was manipulated, dancers collecting scented sugar solution had a higher proportion of head-to-head contacts and a lower proportion around their hind legs compared to dancers collecting unscented solution. The presence of food odors did not affect in-hive behaviors of dancers, but it increased the number of trophallaxes in-between waggle runs (i.e., during circle phases). These results suggest that the honeybee dance facilitates the olfactory information transfer between incoming foragers and hive mates, and we propose that excitatory displays in other social insect species serve the same purpose. While recent empirical and theoretical findings suggested that the colony level foraging benefits of the spatial information encoded in the waggle dance vary seasonally and with habitats, the role of the dance as a compound signal not only indicating the presence of a profitable resource but also amplifying the information transfer regarding floral odors may be important under any ecological circumstances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In honeybees (Apis niellifera), the process of nectar collection is considered a straightforward example of task partitioning with two subtasks or two intersecting cycles of activity: (1) foraging and (2) storing of nectar, linked via its transfer between foragers and food processors. Many observations suggest, however, that nectar colleclion and processing in honeybees is a complex process, involving workers of other sub-castes and depending on variables such as resource profitability or the amount of stored honey. It has been observed that food processor bees often distribute food to other hive bees after receiving it from incoming foragers, instead of storing it immediately in honey cells. While there is little information about the sub-caste affiliation and the behaviour of these second-order receivers, this stage may be important for the rapid distribution of nutrients and related information. To investigate the identity of these second-order receivers, we quantified behaviours following nectar transfer and compared these behaviours with the behaviour of average worker hive-bees. Furthermore, we tested whether food quality (sugar concentration) affects the behaviour of the second-order receivers. Of all identified second-order receivers, 59.3% performed nurse duties, 18.5% performed food-processor duties and 22.2% performed forager duties. After food intake, these bees were more active, had more trophallaxes (especially offering contacts) compared to average workers and they were found mainly in the brood area, independent of food quality. Our results show that the liquid food can be distributed rapidly among many bees of the three main worker sub-castes, without being stored in honey cells first. Furthermore, the results suggest that the rapid distribution of food partly depends on the high activity of second-order receivers.