857 resultados para GLUCOSE-DEHYDROGENASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaglyceroporin-9 (AQP9) facilitates diffusion of water and energy substrates such as glycerol and monocarboxylates. AQP9 is present in plasma membrane and mitochondria of astrocytes and catecholaminergic neurons, suggesting that it plays a role in the energetic status of these cells. Using specific small interference RNA directed against AQP9 in astrocyte cultures, we showed that glycerol uptake is decreased which is associated with an increase in glucose uptake and oxidative metabolism. Our results not only confirm the presence of AQP9 in astrocytes but also suggest that changes in AQP9 expression alter glial energy metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic study of the coupled enzymatic reaction involving monomeric yeast hexokinase PII (HK) and yeast glucose-6-phosphate dehydrogenase (G-6-PDH) yields a Michaelis constant of 0.15 ± 0.01 mM for D-glucose. At pH 8.7 HK is present in monomeric form. The addition of polyethylene glycol (PEG), to the reaction mixture increased the affinity of HK for glucose, independent ofMW of the PEG from 2000 to 10000. The osmotic stress exerted by PEG can be used to measure the change in number of water molecules that accompany enzyme conformational changes (Rand, et al., 1993). Results indicate that the G-6-PDH is not osmotically sensitive and thus, the change in the number of PEG-inaccessible water molecules (ANw) measured in the coupled reaction is only the difference between the glucose-bound and glucosefree conformations of HK. ANw ~ 450 with PEGs of MW > 2000 under conditions for both binding (Reid and Rand, 1997) and kinetic assays. The contribution water may play in the binding of ATP (Km = 0.24 + 0.02 mM) has also been examined. It was found that in this case ANw = (for osmotic pressures < 2.8x10* dynes/cm^), suggesting no additional numbers of waters are displaced when ATP binds to HK. Osmotic pressure experiments were also performed with dimeric HK. It was determined that both the monomeric and dimeric forms of HK give the same ANw under low pressures. If this large ANw is due to conformational flexibility, it would appear that the flexibility is not reduced upon dimerization ofthe enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine cell glucose kinetics in rat skeletal muscle during iso-osmotic recovery from hyper- and hypo-osmotic stress. Rat EDL muscles were incubated for sixty minutes in either HYPO (190 mmol/kg), ISO (290 mmol/kg), or HYPER (400 mmol/kg) media (Sigma medium-199, 8 mM glucose) according to an established in vitro whole muscle model. In addition to sixty minute baseline measures in aniso-osmotic conditions, (HYPO-0 n=8; ISO- 0, n=S; HYPER-0, n=8), muscles were subjected to either one minute (HYPO-1 n=8; ISO-1, n=8; HYPER-1, n=8) or five minutes (HYPO-5 n=8; ISO-5, n=8; HYPER-5, n=8) of iso-osmotic recovery media and analyzed for metabolite content and glycogen synthase percent activation. To determine glucose uptake during iso-osmotic recovery, muscles (n=6 per group) were incubated for sixty minutes in either hypo-, iso-, or hyper-osmotic media immediately followed by five minutes of iso-osmotic media containing 3H-glucose and 14 C-mannitol. Increased relative water content/decreased [glucose] (observed in HYPO-0) and decreased water content/increased [glucose] (observed in HYPER-0) returned to ISO levels within 5 minutes of recovery. Glycogen synthase percent activation increased significantly in HYPO-5 over iso-osmotic controls. Glucose uptake measurements revealed no significant differences between groups. It was determined that [glucose] and muscle water content rapidly recovered from osmotic stress demonstrating skeletal muscle's resilience to osmotic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracerebroventricular (ICV) administration of bombesin (BN) induces a syndrome characterized by stereotypic locomotion and grooming, hyperactivity and sleep elimination, hyperglycemia and hypothermia, hyperhemodynamics, feeding inhibition, and gastrointestinal function changes. Mammalian BN-like peptides (MBNs), e.g. gastrin-releasing peptide (GRP), Neuromedin C (NMC), and Neuromedin B (NMB), have been detected in the central nervous system. Radio-labeled BN binds to specific sites in discrete cerebral regions. Two specific BN receptor subtypes (GRP receptor and NMB receptor) have been identified in numerous brain regions. The quantitative 2-[14C]deoxyglucose ([14C]20G) autoradiographic method was used to map local cerebral glucose utilization (LCGU) in the rat brain following ICV injection of BN (vehicle, BN O.1Jlg, O.5Jlg). At each dose, experiments were conducted in freely moving or restrained conditions to determine whether alterations in cerebral function were the result of BN central administration, or were the result of BN-induced motor stereotypy. The anteroventral thalamic nucleus (AV) (p=O.029), especially its ventrolateral portion (AVVL) (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present thesis, the role of hydration during the glucose induced conformational change of hexokinase is investigated. This is accomplished by applying the osmotic stress technique. The osmotic stress technique is founded on varying of the activity of water in a system in order to determine ifs effects. This is accomplished by adding inert solute molecules that are excluded from the system under study. The solute molecules used within the present investigation are Polyethylene glycols (PEGs). PEGs aid in the removal of water from hexokinase by exerting osmotic pressure. The osmotic pressures of the PEG solutions are also measured with both vapour pressure osmometry and secondary osmometry with phospholipids. An interesting discovery is made in that the osmotic pressures of PEG and co-solute solutions are non-additive. This indicates that PEG concentrates co-solutes in solution by making a certain proportion of the water inaccessible. Glucose binding was measured fluorometrically and the glucose equilibrium dissociation constant (GEDC) of hexokinase is measured in solutions containing the different MW PEGs. Changes in the sensitivity of the glucose affinity with osmotic pressure allows the calculation of the change in the numbers of polymer-inaccessible water molecules upon the binding of glucose to hexokinase ~Nw. It was determined the ~Nw decreases with increases in osmotic pressure in the presence of all MW PEGs. ~Nw decreases from values between 45-290 water molecules at low pressure to approximately 15 at high pressure. There is also a molecular weight dependence observed. There are large decreases in ~Nw with osmotic pressure in the presence of PEGs above MW 1000. However, below MW 1500 changes in ~Nw with osmotic pressure are relatively small. These findings are interpreted with respect to two possible mechanisms involving changes in the conformation of hexokinase u~der osmotic pressure and the access of the PEG molecules to water surrounding hexokinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time course for the reversal of the adaptive increase in pyruvate dehydrogenase kinase (PDK) activity following a 6d high fat diet (HP: 4.2 ± 0.2 % carbohydrate; 75.6 ± 0.4 % fat; 19.5 ± 0.8 % protein) was investigated in human skeletal muscle (vastus lateralis). HF feeding increased PDK activity by 44% (from 0.081 ± 0.025 min"' to 0.247 ± 0.025 mm\p < 0.05). Following carbohydrate re-feeding, (88% carbohydrate; 5% fat; 7% protein), PDK activity had returned to baseline (0.111 ± 0.014 min"') within 3h of re-feeding. The active fraction of pyruvate dehydrognease (PDHa) was depressed following 6d of the HF diet (from 0.89 ± 0.21 mmol/min/kg WW to 0.32 ± 0.05 mmol/min/kg ww,p <0.05) and increased to pre-HF levels by 45 min of post re-feeding (0.74 ±0.19 mmol/min/kg ww) and remained elevated for 3h. Western blotting analysis of the PDK isoforms, PDK4 and PDK2, revealed a 31% increase in PDK4 protein content following the HF diet, with no change in PDK2 protein. This adaptive increase in PDK4 protein content was reversed with carbohydrate re-feeding. It was concluded that the adaptive up-regulation in PDK activity and PDK4 protein content was fiilly reversed by 3h following carbohydrate re-feeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of pyruvate dehydrogenase (PDH), which converts pyruvate into acetyl-CoA, is accomplished by a pair of specific phosphatases (PDP 1 & 2). A cross-sectional study investigating the effect of aerobic capacity on PDP activity and expression found that: 1) PDP activity and PDP! protein expression were positively correlated with most aerobic capacity measures in males (n=lS), but not females (n=12); 2) only males showed a positive correlation between PDP activity and PDPl protein expression (r=0.47; p=O.05), indicating that the increase in PDP activity in males is largely explained by increased PDPl protein expression, but that females rely on another level for PDP activity regulation; and 3) PDP} and Ela protein expression increase in unison when expressed relative to the E2 core. These data suggest that with increased aerobic capacity there is an increased capacity for carbohydrate oxidation through PDH, via El a, and an increased ability to activate PDH, via PDP, when exercising maximally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PD H is deactivated by a set of PD H kinases (PD K 1-4) with PDK2 and 4 being the predominant isoforms in skeletal muscle. PDK2 is highly sensitive to pyruvate inhibition, and is the most abundant isoform, while PDKI and 4 protein content are normally lower. This study examined the PDK isoform content and PDHa activation in muscle at rest and 10 and 40 Hz stimulation from PDK2 knockout (PDK2KO) mice to delineate the role of PDK2 in activating the PDH complex during low and moderate intensity muscle contraction. PDHa activity was lower in PDK2KO mice during contraction while total PDK actitvity was -4 fold lower. PDK4 protein was not different, however PDKI partially compensated for the lack of PDK2 and was -56% higher than WT. PDKI is a very potent inhibitor of the PDH complex due to its phosphorylation site specificity and allosteric regulation. These results suggest that the site specificity and allosteric regulatory properties of the individual PDK isoforms are more important than total PDK activity in determining transformation of the complex and PDHa activity during acute muscle contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular hyper-osmotic (HYPER) stress increases glucose uptake to defend cell volume, when compared to iso-osmotic (ISO) conditions in skeletal muscle. The purpose of this study was to determine a time course for changes in common signaling proteins involved in glucose uptake during acute hyper-osmotic stress in isolated mammalian skeletal muscle. Rat extensor digitorum longus (EDL) muscles were excised and incubated in a media formulated to mimic ISO (290 ± 10 mmol/kg) or HYPER (400 ± 10 mmol/kg) extracellular condition (Sigma Media-199). Signaling mechanisms were investigated by determining the phosphorylation states of Akt, AMPK, AS160, cPKC and ERK after 30, 45 and 60 minutes of incubation. AS160 was found to be significantly more phosphorylated in HYPER conditions compared to ISO after 30 minutes (p<0.01). It is speculated that AS160 phosphorylation increases glucose transporter 4 (GLUT4) content at the cell surface thereby facilitating an increase in glucose uptake under hyper-osmotic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pyruvate dehydrogenase (PDH) complex regulates the oxidation of carbohydrates in mammals. Decreased activation of PDH following exhaustive exercise may aid the resynthesis of glycogen through increased activity of PDH kinase-4 (PDK4), one of four kinases that decrease the activity of the PDH complex. The purpose of this study was to examine the role of PDK4 in post-exercise glycogen resynthesis. Wild-type (WT) and PDK4-knockout (PDK4-KO mice) were exercised to exhaustion and were sampled at rest (Rest), at exercise exhaustion (Exh), and after two-hours post-exercise (Rec). Differences in feeding post-exercise led to the addition of a PDK4-KO group, pair-fed (PF) with WT mice. Glycogen fully recovered in all Rec groups in muscle however remained low in the PF group in liver. Flux through PDH was elevated in PDK4-KO muscle with feeding and low in the PF group in both tissues. This suggests PDK4 may fine-tune flux through PDH during exercise recovery.