961 resultados para GENOME-WIDE DETECTION
Resumo:
Hypertension is a common heritable cardiovascular risk factor. Some rare monogenic forms of hypertension have been described, but the majority of patients suffer from essential hypertension, for whom the underlying genetic mechanisms are not clear. Essential hypertension is a complex trait, involving multiple genes and environmental factors. Recently, progress in the identification of common genetic variants associated with essential hypertension has been made due to large-scale international collaborative projects. In this article we review the new research methods used as well as selected recent findings in this field.
Resumo:
Recent progresses in genetics have opened new avenues to further our understanding of the pathophysiological mechanisms underlying cardiovascular disease, raising, new expectations in the field of personalized medicine. Genetic tests may have a high predictive value for rare monogenic diseases. The situation is very different for common polygenic diseases, such as myocardial infarction, type 2 diabetes or stroke. The results from recent genome-wide association studies have provided useful information for research, but have not yet been proven to be clinically useful. It is therefore currently not recommended to conducted genetic testing to guide cardiovascular prevention neither in clinical nor in public health settings.
Resumo:
Approximately 3% of the world population is chronically infected with the hepatitis C virus (HCV), with potential development of cirrhosis and hepatocellular carcinoma. Despite the availability of new antiviral agents, treatment remains suboptimal. Genome-wide association studies (GWAS) identified rs12979860, a polymorphism nearby IL28B, as an important predictor of HCV clearance. We report the identification of a novel TT/-G polymorphism in the CpG region upstream of IL28B, which is a better predictor of HCV clearance than rs12979860. By using peripheral blood mononuclear cells (PBMCs) from individuals carrying different allelic combinations of the TT/-G and rs12979860 polymorphisms, we show that induction of IL28B and IFN-γ-inducible protein 10 (IP-10) mRNA relies on TT/-G, but not rs12979860, making TT/-G the only functional variant identified so far. This novel step in understanding the genetic regulation of IL28B may have important implications for clinical practice, as the use of TT/G genotyping instead of rs12979860 would improve patient management.
Resumo:
Nuclear receptors are a major component of signal transduction in animals. They mediate the regulatory activities of many hormones, nutrients and metabolites on the homeostasis and physiology of cells and tissues. It is of high interest to model the corresponding regulatory networks. While molecular and cell biology studies of individual promoters have provided important mechanistic insight, a more complex picture is emerging from genome-wide studies. The regulatory circuitry of nuclear receptor regulated gene expression networks, and their response to cellular signaling, appear highly dynamic, and involve long as well as short range chromatin interactions. We review how progress in understanding the kinetics and regulation of cofactor recruitment, and the development of new genomic methods, provide opportunities but also a major challenge for modeling nuclear receptor mediated regulatory networks.
Resumo:
We previously used a single nucleotide polymorphism (SNP) in the CHRNA5-A3-B4 gene cluster associated with heaviness of smoking within smokers to confirm the causal effect of smoking in reducing body mass index (BMI) in a Mendelian randomisation analysis. While seeking to extend these findings in a larger sample we found that this SNP is associated with 0.74% lower body mass index (BMI) per minor allele in current smokers (95% CI -0.97 to -0.51, P = 2.00 × 10(-10)), but also unexpectedly found that it was associated with 0.35% higher BMI in never smokers (95% CI +0.18 to +0.52, P = 6.38 × 10(-5)). An interaction test confirmed that these estimates differed from each other (P = 4.95 × 10(-13)). This difference in effects suggests the variant influences BMI both via pathways unrelated to smoking, and via the weight-reducing effects of smoking. It would therefore be essentially undetectable in an unstratified genome-wide association study of BMI, given the opposite association with BMI in never and current smokers. This demonstrates that novel associations may be obscured by hidden population sub-structure. Stratification on well-characterized environmental factors known to impact on health outcomes may therefore reveal novel genetic associations.
Resumo:
The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 × 10(-8)<P<10(-5)) with AGA in a recent meta-analysis. We analyzed a replication set comprising 2,759 cases and 2,661 controls of European descent to confirm the association with AGA at these loci. Combined analysis of the replication and the meta-analysis data identified four genome-wide significant risk loci for AGA on chromosomes 2q35, 3q25.1, 5q33.3, and 12p12.1. The strongest association signal was obtained for rs7349332 (P=3.55 × 10(-15)) on chr2q35, which is located intronically in WNT10A. Expression studies in human hair follicle tissue suggest that WNT10A has a functional role in AGA etiology. Thus, our study provides genetic evidence supporting an involvement of WNT signaling in AGA development.
Resumo:
Elevated serum ferritin levels may reflect a systemic inflammatory state as well as increased iron storage, both of which may contribute to an unfavorable outcome of chronic hepatitis C (CHC). We therefore performed a comprehensive analysis of the role of serum ferritin and its genetic determinants in the pathogenesis and treatment of CHC. To this end, serum ferritin levels at baseline of therapy with pegylated interferon-alpha and ribavirin or before biopsy were correlated with clinical and histological features of chronic hepatitis C virus (HCV) infection, including necroinflammatory activity (N = 970), fibrosis (N = 980), steatosis (N = 886), and response to treatment (N = 876). The association between high serum ferritin levels (> median) and the endpoints was assessed by logistic regression. Moreover, a candidate gene as well as a genome-wide association study of serum ferritin were performed. We found that serum ferritin ≥ the sex-specific median was one of the strongest pretreatment predictors of treatment failure (univariate P < 0.0001, odds ratio [OR] = 0.45, 95% confidence interval [CI] = 0.34-0.60). This association remained highly significant in a multivariate analysis (P = 0.0002, OR = 0.35, 95% CI = 0.20-0.61), with an OR comparable to that of interleukin (IL)28B genotype. When patients with the unfavorable IL28B genotypes were stratified according to high versus low ferritin levels, SVR rates differed by > 30% in both HCV genotype 1- and genotype 3-infected patients (P < 0.001). Serum ferritin levels were also independently associated with severe liver fibrosis (P < 0.0001, OR = 2.67, 95% CI = 1.68-4.25) and steatosis (P = 0.002, OR = 2.29, 95% CI = 1.35-3.91), but not with necroinflammatory activity (P = 0.3). Genetic variations had only a limited impact on serum ferritin levels. Conclusion: In patients with CHC, elevated serum ferritin levels are independently associated with advanced liver fibrosis, hepatic steatosis, and poor response to interferon-alpha-based therapy.
Resumo:
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression-the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a "soft sweep," which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.
Resumo:
Introduction: Since 2004, cannabis is prohibited by the World Anti-Doping Agency (WADA) for all sports in competition. In the years since then, about half of all positive doping cases in Switzerland have been related to cannabis consumption. In most cases, the athletes plausibly claim to have consumed cannabis several days or even weeks before competition and only for recreational purposes not related to competition. In doping analysis, the target analyte in urine samples is 11-nor-delta-9-tetrahydrocannabinol- 9-carboxylic acid (THC-COOH), the reporting threshold for laboratories is 15 ng/mL. However, the wide detection window of this long-term THC metabolite in urine does not allow a conclusion concerning the time of consumption or the impact on the physical performance. Aim: The purpose of the present pharmacokinetic study on volunteers was to evaluate target analytes with shorter urinary excretion time. Subsequently, urines from athletes tested positive for cannabis should be reanalyzed including these analytes. Methods: In an one-session clinical trial (approved by IRB, Swissmedic, and Federal Office of Public Health), 12 healthy, male volunteers (age 26 ± 3 yrs, BMI 24 ± 2 kg/m2) with cannabis experience (> once/month) smoked a Cannabis cigarette standardized to 70 mg THC/cigarette (Bedrobinol® 7%, Dutch Office for Medicinal Cannabis) following a paced-puffing procedure. Plasma and urine was collected up to 8 h and 11 days, respectively. Total THC, 11-hydroxy-THC (THC-OH), and THC-COOH were determined after enzymatic hydrolyzation followed by SPE and GC/MS-SIM. The limit of quantitation (LOQ) for all analytes was 0.1 ng/mL. Visual analog scales (VAS) and vital functions were used for monitoring psychological and somatic side-effects at every timepoint of specimen collection (up to 480 min). Results: Eight puffs delivered a mean THC dose of 45 mg. Mean plasma levels of total THC, THC-OH and THC-COOH were measured in the range of 0.1-20.9, 0.1-1.8, and 1.8-7.5 ng/mL, respectively. Peak concentrations were observed at 5, 10, and 90 min. Mean urine levels were measured in the range of 0.1-0.7, 0.10-6.2, and 0.1-13.4 ng/mL, respectively. The detection windows were 2-8, 2-96, and 2-120 h. No or only mild effects were observed, such as dry mouth, sedation, and tachycardia. Besides high to very high THC-COOH levels (0-978 ng/mL), THC (0.1-24 ng/mL) and THC-OH (1-234 ng/mL) were found in 90 and 96% of the cannabis-positive urines from athletes. Conclusion: Instead of or in addition to THC-COOH, the pharmacologically active THC and THC-OH should be the target analytes for doping urine analysis. This would allow the estimation of more recent Cannabis consumption, probably influencing performance during competition. Keywords: cannabis, doping, clinical trial, plasma and urine levels, athlete's samples
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Resumo:
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
Resumo:
The obesity epidemic is associated with the recent availability of highly palatable and inexpensive caloric food as well as important changes in lifestyle. Genetic factors, however, play a key role in regulating energy balance and numerous twin studies have estimated the BMI heritability between 40 and 70%. While common variants, identified through genome-wide association studies (GWAS) point toward new pathways, their effect size are too low to be of any use in the clinic. This review therefore concentrates on genes and genomic regions associated with very high risks of human obesity. Although there are no consensus guidelines, we review how the knowledge on these "causal factors" can be translated into the clinic for diagnostic purposes. We propose genetic workups guided by clinical manifestations in patients with severe early-onset obesity. While etiological diagnoses are unequivocal in a minority of patients, new genomic tools such as Comparative Genomic Hybridization (CGH) array, have allowed the identification of novel "causal" loci and next-generation sequencing brings the promise of accelerated pace for discoveries relevant to clinical practice.
Resumo:
Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.
Resumo:
Mutations in LACERATA (LCR), FIDDLEHEAD (FDH), and BODYGUARD (BDG) cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis), of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE), which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.
Resumo:
Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.
Resumo:
One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.