954 resultados para GASEOUS WASTES
Resumo:
Polyhydroxyalkanoates (PHAs) are natural biologically synthesized polymers that have been the subject of much interest in the last decades due to their biodegradability. Thus far, its microbial production is associated with high operational costs, which increases PHA prices and limits its marketability. To address this situation, this thesis’ work proposes the utilization of photosynthetic mixed cultures (PMC) as a new PHA production system that may lead to a reduction in operational costs. In fact, the operational strategies developed in this work led to the selection of PHA accumulating PMCs that, unlike the traditional mixed microbial cultures, do not require aeration, thus permitting savings in this significant operational cost. In particular, the first PHA accumulating PMC tested in this work was selected under non-aerated illuminated conditions in a feast and famine regime, being obtained a consortium of bacteria and algae, where photosynthetic bacteria accumulated PHA during the feast phase and consumed it for growth during the famine phase, using the oxygen produced by algae. In this symbiotic system, a maximum PHA content of 20% cell dry weight (cdw) was reached, proving for the first time, the capacity of a PMC to accumulate PHA. During adaptation to dark/light alternating conditions, the culture decreased its algae content but maintained its viability, achieving a PHA content of 30% cdw. Also, the PMC was found to be able to utilize different volatile fatty acids for PHA production, accumulating up to 20% cdw of a PHA co-polymer composed of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (HV) monomers. Finally, a new selective approach for the enrichment of PMCs in PHA accumulating bacteria was tested. Instead of imposing a feast and famine regime, a permanent feast regime was used, thus selecting a PMC that was capable of simultaneously growing and accumulating PHA, being attained a maximum PHA content of 60% cdw, the highest value reported for a PMC thus far. The results presented in this thesis prospect the utilization of cheap, VFA-rich fermented wastes as substrates for PHA production, which combined with this new photosynthetic technology opens up the possibility for direct sunlight illumination, leading to a more cost-effective and environmentally sustainable PHA production process.
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.
Resumo:
RESUMO - O quadro legislativo de um país, no que concerne aos resíduos hospitalares (RH), contém a sua designação, definição e classificação. É essa a matriz de referência para a separação efectuada na origem e todo o circuito que, a partir desse momento, um determinado resíduo toma até ao seu tratamento. Assim, faz-se o estudo comparativo das definições e tipos de classificação de RH em quatro países da União Europeia: Alemanha, Reino Unido, Espanha (Região Autónoma da Catalunha) e Portugal. Reconhecem-se as diferentes designações deste tipo de resíduos e discute-se o seu significado e as suas implicações na percepção de risco por parte dos profissionais e do público. Identificam-se duas estratégias subjacentes à elaboração das definições: a contaminação de materiais com microrganismos patogénicos bem definidos, as suas fontes e as actividades que os produzem. Apresentam-se as classificações de RH propostas pelos organismos internacionais de referência e analisa-se comparativamente a evolução do enquadramento legal português e da Região Autónoma da Catalunha, evidenciando-se a variabilidade temporal e justificando-se a necessidade de se efectuar o estudo da variabilidade geográfica. Utilizam-se três critérios para a análise das classificações consideradas: a concordância definição-classificação, o número e tipo de grupos das classificações e os tipos de resíduos por grupos. Identificam-se os denominadores comuns às classificações analisadas, assim como as suas principais diferenças. Conclui-se que a definição de RH adoptada por cada país condiciona o tipo de classificação de RH nesse mesmo país. Verifica-se ainda que a inexistência de critérios claros de avaliação da contaminação pode dificultar a tarefa da triagem dos RH por parte dos profissionais de saúde.
Resumo:
RESUMO - Os resíduos hospitalares (RH) perigosos — Grupos III e IV — produzidos na prestação de cuidados domiciliários (CD), dada a sua composição, infecciosidade, toxicidade, mobilidade e persistência, constituem um perigo relevante. A exposição a estes resíduos traduz-se num risco importante para os profissionais de saúde, doentes e seus familiares. Dado que em muitas situações estes resíduos ficam no domicílio dos doentes, sendo posteriormente depositados nos contentores camarários, o risco é alargado ao público em geral, aos catadores e aos profissionais de recolha de resíduos sólidos urbanos dos municípios. Através de um estudo observacional, transversal, com componente analítica, da produção de RH pretende-se determinar e caracterizar os quantitativos dos Grupos III e IV produzidos na prestação de CD em 2003 no concelho da Amadora, identificando também o seu destino final. Utiliza- se uma amostra aleatória do universo de doentes submetidos a tratamento domiciliário em 2003 e efectua-se a análise da associação estatística das variáveis peso do Grupo III e peso do Grupo IV com as variáveis relativas às características do doente (sexo, idade e doença), do tratamento (duração e periodicidade) e sazonais (época do ano). A média do peso produzido dos RH por acto prestado é de 213,1 g para o Grupo III e de 3,8 g para o Grupo IV. Estima--se uma produção de RH do Grupo III na prestação de CD, em 2003, no concelho da Amadora entre 8,8 e 11,4 t e para os RH do Grupo IV um valor de 10,2 kg. Verifica-se que, por acto prestado, a produção média de resíduos do Grupo III é maior nos doentes mais idosos, nas úlceras varicosas, no pé diabético, na escara de pressão, nas situações de maior duração do tratamento e nos doentes submetidos a três tratamentos por semana. Também por acto prestado, a produção média de RH do Grupo IV é maior nos doentes mais novos, na patologia osteo-articular, na infecção, no acidente, no pós-operatório, nas situações de menor duração do tratamento e nos doentes submetidos a seis tratamentos por semana (o que está relacionado com as patologias em causa). As produções médias, por acto prestado, de ambos os grupos não apresentam relação com as variáveis idade e época do ano. Todos os RH produzidos nos actos prestados em CD, em 2003, no concelho da Amadora foram depositados nos contentores municipais. Recomendam-se acções de formação e de informação dirigidas aos profissionais de saúde e ao público em geral, a criação de condições para que os RH produzidos nos CD sejam transportados, em condições adequadas, para os centros de saúde e uma articulação entre os órgãos de gestão dos centros de saúde, a autarquia, os operadores de gestão de RH e os serviços de saúde pública no sentido de serem encontradas soluções apropriadas e inovadoras relativamente à gestão dos RH produzidos na prestação de CD.
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.
Resumo:
Marine ecosystem can be considered a rather exploited source of natural substances with enormous bioactive potential. In Mexico macro-algae study remain forgotten for research and economic purposes besides the high amount of this resource along the west and east coast. For that reason the Bioferinery Group of the Autonomous University of Coahuila, have been studying the biorefinery concept in order to recover high value byproducts of Mexican brown macro-algae including polysaccharides and enzymes to be applied in food, pharmaceutical and energy industry. Brown macroalgae are an important source of fucoidan, alginate and laminarin which comprise a complex group of macromolecules with a wide range of important biological properties such as anticoagulant, antioxidant, antitumoral and antiviral and also as rich source of fermentable sugars for enzymes production. Additionally, specific enzymes able to degrade algae matrix (fucosidases, sulfatases, aliginases, etc) are important tools to establish structural characteristics and biological functions of these polysaccharides. The aims of the present work were the integral study of bioprocess for macroalgae biomass exploitation by the use of green technologies as hydrothermal extraction and solid state fermentation in order to produce polysaccharides and enzymes (fucoidan and fucoidan hydrolytic enzymes). This work comprises the use of the different bioprocess phases in order to produce high value products with lower time and wastes.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
The use of sustainable solutions in construction is not just an option, but is increasingly becoming a need of the Society. Thus, nowadays the recycling of waste materials is a growing technology that needs to be continuously improved, namely by researching new solutions for waste valorisation and by increasing the amount of wastes reused. In the paving industry, the reuse of reclaimed asphalt (RA) is becoming common practice, but needs further research work. Thus, this study aims to increase the incorporation of RA and other waste materials in the production of recycled asphalt mixtures in order to improve their mechanical, environmental and economic performance. Recycled mixtures with 50% RA were analysed in this study, including: i) RA selection, preparation and characterization; ii) incorporation of other waste materials as binder additives or modifiers, like used motor oil (UMO) and waste high density polyethylene (HDPE); iii) production of different mixtures (without additives; with UMO; with UMO and HDPE) and comparison of their performance in order to assess the main advantages of each solution. With this study it was concluded that up to 7.5 % of UMO and 4.0 % of HDPE can be used in a new modified binder for asphalt mixtures with 50 % of RA, which have excellent properties concerning the rutting with WTS = 0.02 mm/103 cycles, the fatigue resistance with ε6 = 160.4, and water sensitivity with an ITSR of 81.9 %.
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
The recycling of pavements is nowadays a very important question to the road paving industry. With the objective of incorporating higher percentages of reclaimed asphalt (RA) materials in recycled asphalt mixtures, new techniques have been developed in the last years. The use of foamed bitumen is normally associated with the production of cold asphalt mixtures, which usually show lower quality standards. However, the objective of the work presented in this paper is to assess the use of foamed bitumen as the binder of warm asphalt mixtures incorporating 30% RA, which have quality standards similar to those of conventional mixtures. Thus, five mixtures have been produced with 30% RA, one of them with a conventional bitumen (control mix) and the others with foamed bitumen at different production temperatures. The mixtures were tested for compactability and water sensitivity and the results show a possible reduction of 25 ºC in the production temperatures, while the water sensitivity test results were kept close to 90 %.
Resumo:
Road pavements are very important infrastructures for the Society, but they can cause serious environmental impacts during construction, operation and rehabilitation phases. Thus, it is essential to develop surface paving solutions that promote not only the durability but also a comfortable and safe use. In fact, this work aims to study the properties of new opengraded mixtures for surface layers produced with plastic wastes. First, HDPE and EVA wastes were used as bitumen modifiers, and then another plastic waste (PEX) replaced part of the aggregates. After studying the modified binders, the open-graded mixtures were designed, and then they were tested concerning their particle loss, rutting resistance, surface texture and damping effect. It was concluded that both ways of using the plastic wastes can improve the mechanical and functional properties of the open-graded mixtures related to the pavement performance.
Resumo:
This work compares the viscoelastic properties of an asphalt binder (70/100 pen) modified with different waste plastics and the mechanical properties of the resultant asphalt mixtures. Two different plastic wastes were used, namely recycled HDPE and EVA. Three different polymer modified binders were produced with these plastic wastes: i) 5% HDPE modified binder (P5); ii) 5% EVA modified binder (E5) and; iii) a modified binder with 4% of EVA and 2% HDPE (E4P2). Asphalt mixtures were produced with these modified binders, and their mechanical properties were analysed and compared with a conventional mixture produced with a 30/50 pen bitumen. It was possible to conclude that these recycled polymers are able to improve the mechanical performance of the asphalt mixtures used in road paving.
Resumo:
The increasing environmental concern about waste materials and the necessity of improving the performance of asphalt mixtures prompted the study of incorporating different waste materials in conventional bitumen. The reuse of waste materials can present benefits at an environmental and economic level, and some wastes can be used to improve the pavement performance. Thus, the purpose of this study is to evaluate the incorporation of different waste materials in bitumen, namely waste motor oil and different polymers. In order to accomplish this goal, 10% of waste motor oil and 5% of polymers (high density polyethylene, crumb rubber and styrene-butadiene-styrene) were added to a conventional bitumen and the resulting modified bitumens were characterized through basic and rheological tests. From this work, it can be concluded that the incorporation of different waste materials improve some important properties of the conventional bitumen. Such improvements might indicate a good behaviour at medium/high temperatures and an increase of fatigue and rutting resistance. Therefore, these modified bitumens with waste materials can contribute to a sustainable development of road paving industry due to their performance and environmental advantages.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Dissertação de mestrado em Economia Industrial e de Empresa