876 resultados para Fungi in agriculture
Resumo:
El suelo salino impone un estrés abiótico importante que causa graves problemas en la agricultura ya que la mayoría de los cultivos se ven afectados por la salinidad debido a efectos osmóticos y tóxicos. Por ello, la contaminación y la escasez de agua dulce, la salinización progresiva de tierras y el aumento exponencial de la población humana representan un grave problema que amenaza la seguridad alimentaria mundial para las generaciones futuras. Por lo tanto, aumentar la tolerancia a la salinidad de los cultivos es un objetivo estratégico e ineludible para garantizar el suministro de alimentos en el futuro. Mantener una óptima homeostasis de K+ en plantas que sufren estrés salino es un objetivo importante en el proceso de obtención de plantas tolerantes a la salinidad. Aunque el modelo de la homeostasis de K+ en las plantas está razonablemente bien descrito en términos de entrada de K+, muy poco se sabe acerca de los genes implicados en la salida de K+ o de su liberación desde la vacuola. En este trabajo se pretende aclarar algunos de los mecanismos implicados en la homeostasis de K+ en plantas. Para ello se eligió la briofita Physcomitrella patens, una planta no vascular de estructura simple y de fase haploide dominante que, entre muchas otras cualidades, hacen que sea un modelo ideal. Lo más importante es que no sólo P. patens es muy tolerante a altas concentraciones de Na+, sino que también su posición filogenética en la evolución de las plantas abre la posibilidad de estudiar los cambios claves que, durante el curso de la evolución, se produjeron en las diversas familias de los transportadores de K+. Se han propuesto varios transportadores de cationes como candidatos que podrían tener un papel en la salida de K+ o su liberación desde la vacuola, especialmente miembros de la familia CPA2 que contienen las familias de transportadores KEA y CHX. En este estudio se intenta aumentar nuestra comprensión de las funciones de los transportadores de CHX en las células de las plantas usando P. patens, como ya se ha dicho. En esta especie, se han identificado cuatro genes CHX, PpCHX1-4. Dos de estos genes, PpCHX1 y PpCHX2, se expresan aproximadamente al mismo nivel que el gen PpACT5, y los otros dos genes muestran una expresión muy baja. La expresión de PpCHX1 y PpCHX2 en mutantes de Escherichia coli defectivos en el transporte de K+ restauraron el crecimiento de esta cepa en medios con bajo contenido de K+, lo que viii sugiere que la entrada de K+ es energizada por un mecanismo de simporte con H+. Por otra parte, estos transportadores suprimieron el defecto asociado a la mutación kha1 en Saccharomyces cerevisiae, lo que sugiere que podrían mediar un antiporte en K+/H+. La proteína PpCHX1-GFP expresada transitoriamente en protoplastos de P. patens co-localizó con un marcador de Golgi. En experimentos similares, la proteína PpCHX2-GFP localizó aparentemente en la membrana plasmática y tonoplasto. Se construyeron las líneas mutantes simples de P. patens ΔPpchx1 y ΔPpchx2, y también el mutante doble ΔPpchx2 ΔPphak1. Los mutantes simples crecieron normalmente en todas las condiciones ensayadas y mostraron flujos de entrada normales de K+ y Rb+; la mutación ΔPpchx2 no aumentó el defecto de las plantas ΔPphak1. En experimentos a largo plazo, las plantas ΔPpchx2 mostraron una retención de Rb+ ligeramente superior que las plantas silvestres, lo que sugiere que PpCHX2 promueve la transferencia de Rb+ desde la vacuola al citosol o desde el citosol al medio externo, actuando en paralelo con otros transportadores. Sugerimos que transportadores de K+ de varias familias están involucrados en la homeostasis de pH de orgánulos ya sea mediante antiporte K+/H+ o simporte K+-H+.ix ABSTRACT Soil salinity is a major abiotic stress causing serious problems in agriculture as most crops are affected by it. Moreover, the contamination and shortage of freshwater, progressive land salinization and exponential increase of human population aggravates the problem implying that world food security may not be ensured for the next generations. Thus, a strategic and an unavoidable goal would be increasing salinity tolerance of plant crops to secure future food supply. Maintaining an optimum K+ homeostasis in plants under salinity stress is an important trait to pursue in the process of engineering salt tolerant plants. Although the model of K+ homeostasis in plants is reasonably well described in terms of K+ influx, very little is known about the genes implicated in K+ efflux or release from the vacuole. In this work, we aim to clarify some of the mechanisms involved in K+ homeostasis in plants. For this purpose, we chose the bryophyte plant Physcomitrella patens, a nonvascular plant of simple structure and dominant haploid phase that, among many other characteristics, makes it an ideal model. Most importantly, not only P. patens is very tolerant to high concentrations of Na+, but also its phylogenetic position in land plant evolution opens the possibility to study the key changes that occurred in K+ transporter families during the course of evolution. Several cation transporter candidates have been proposed to have a role in K+ efflux or release from the vacuole especially members of the CPA2 family which contains the KEA and CHX transporter families. We intended in this study to increase our understanding of the functions of CHX transporters in plant cells using P. patens, in which four CHX genes have been identified, PpCHX1-4. Two of these genes, PpCHX1 and PpCHX2, are expressed at approximately the same level as the PpACT5 gene, but the other two genes show an extremely low expression. PpCHX1 and PpCHX2 restored growth of Escherichia coli mutants on low K+-containing media, suggesting they mediated K+ uptake that may be energized by symport with H+. In contrast, these genes suppressed the defect associated to the kha1 mutation in Saccharomyces cerevisiae, which suggest that they might mediate K+/H+ antiport. PpCHX1-GFP protein transiently expressed in P. patens protoplasts co-localized with a Golgi marker. In similar experiments, the PpCHX2-GFP protein appeared to localize to tonoplast and plasma x membrane. We constructed the ΔPpchx1 and ΔPpchx2 single mutant lines, and the ΔPpchx2 ΔPphak1 double mutant. Single mutant plants grew normally under all the conditions tested and exhibited normal K+ and Rb+ influxes; the ΔPpchx2 mutation did not increase the defect of ΔPphak1 plants. In long-term experiments, ΔPpchx2 plants showed a slightly higher Rb+ retention than wild type plants, which suggests that PpCHX2 mediates the transfer of Rb+ from either the vacuole to the cytosol or from the cytosol to the external medium in parallel with other transporters. We suggest that K+ transporters of several families are involved in the pH homeostasis of organelles by mediating either K+/H+ antiport or K+-H+ symport.
Resumo:
Improved management of nitrogen (N) in agriculture is necessary to achieve a sustainable balance between the production of food and other biomass, and the unwanted effects of N on water pollution, greenhouse gas emissions, biodiversity deterioration and human health. To analyse farm N-losses and the complex interactions within farming systems, efficient methods for identifying emissions hotspots and evaluating mitigation measures are therefore needed. The present paper aims to fill this gap at the farm and landscape scales. Six agricultural landscapes in Poland (PL), the Netherlands (NL), France (FR), Italy (IT), Scotland (UK) and Denmark (DK) were studied, and a common method was developed for undertaking farm inventories and the derivation of farm N balances, N surpluses and for evaluating uncertainty for the 222 farms and 11 440 ha of farmland included in the study. In all landscapes, a large variation in the farm N surplus was found, and thereby a large potential for reductions. The highest average N surpluses were found in the most livestock-intensive landscapes of IT, FR, and NL; on average 202 ± 28, 179 ± 63 and 178 ± 20 kg N ha−1 yr−1, respectively. All landscapes showed hotspots, especially from livestock farms, including a special UK case with large-scale landless poultry farming. Overall, the average N surplus from the land-based UK farms dominated by extensive sheep and cattle grazing was only 31 ± 10 kg N ha−1 yr−1, but was similar to the N surplus of PL and DK (122 ± 20 and 146 ± 55 kg N ha−1 yr−1, respectively) when landless poultry farming was included. We found farm N balances to be a useful indicator for N losses and the potential for improving N management. Significant correlations to N surplus were found, both with ammonia air concentrations and nitrate concentrations in soils and groundwater, measured during the period of N management data collection in the landscapes from 2007–2009. This indicates that farm N surpluses may be used as an independent dataset for validation of measured and modelled N emissions in agricultural landscapes. No significant correlation was found with N measured in surface waters, probably because of spatial and temporal variations in groundwater buffering and biogeochemical reactions affecting N flows from farm to surface waters. A case study of the development in N surplus from the landscape in DK from 1998–2008 showed a 22% reduction related to measures targeted at N emissions from livestock farms. Based on the large differences in N surplus between average N management farms and the most modern and N-efficient farms, it was concluded that additional N-surplus reductions of 25–50%, as compared to the present level, were realistic in all landscapes. The implemented N-surplus method was thus effective for comparing and synthesizing results on farm N emissions and the potentials of mitigation options. It is recommended for use in combination with other methods for the assessment of landscape N emissions and farm N efficiency, including more detailed N source and N sink hotspot mapping, measurements and modelling.
Resumo:
Rising water demands are difficult to meet in many regions of the world. In consequence, under meteorological adverse conditions, big economic losses in agriculture can take place. This paper aims to analyze the variability of water shortage in an irrigation district and the effect on farmer?s income. A probabilistic analysis of water availability for agriculture in the irrigation district is performed, through a supply-system simulation approach, considering stochastically generated series of stream-flows. Net margins associated to crop production are as well estimated depending on final water allocations. Net margins are calculated considering either single-crop farming, either a polyculture system. In a polyculture system, crop distribution and water redistribution are calculated through an optimization approach using the General Algebraic Modeling System (GAMS) for several scenarios of irrigation water availability. Expected net margins are obtained by crop and for the optimal crop and water distribution. The maximum expected margins are obtained for the optimal crop combination, followed by the alfalfa monoculture, maize, rice, wheat and finally barley. Water is distributed as follows, from biggest to smallest allocation: rice, alfalfa, maize, wheat and barley.
Resumo:
Value chain in agriculture is a current issue affecting from farmers to consumers. It questions important issues as profitability, and even though continuity of certain sectors. Although there has been an evolution along time in the structure and concentration of intermediate and final levels of the value chain between distribution and retail sector, a similar evolution seems not to arrive at the initial level of the chain, the production sector. This produces large imbalances in power and leverage between levels of the value chain that could imply several problems for rural actors. Relatively little attention has been paid to possible market distortions caused by the high level of concentration distribution side of the agrifood system.
Resumo:
Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.
Resumo:
The analysis of the interaction between Arabidopsis thaliana and adapted (PcBMM) and nonadapted (Pc2127) isolates of the necrotrophic fungus Plectosphaerella cucumerina has contributed to the identification of molecular mechanisms controlling plant resistance to necrotrophs.To characterize the pathogenicity bases of the virulence of necrotrophic fungi in Arabidopsis, we developed P. cucumerina functional genomics tools using Agrobacterium tumefaciens-mediated transformation.We generated PcBMM-GFP and Pc2127-GFP transformants constitutively expressing the green fluorescence protein (GFP), and a collection of random T-DNA insertional PcBMM transformants. Confocal microscopy analyses of the initial stages of PcBMM-GFP infection revealed that this pathogen, like other necrotrophic fungi, does not form an appressorium or penetrate into plant cells, but causes successive degradation of leaf cell layers
Resumo:
In the last decade, research on irrigation has mainly been aimed at reducing crop water consumption. In arid and semi-arid environments, in relation to the limited water resources, the use of low quality water in agriculture has also been investigated in order to detect their effects on soil physical properties and on crop production. More recently, even the reduction of energy consumption in agriculture, as well as the effects of external factors, climate change and agricultural policies, have been major research interests. All these objectives have been considered in the papers included in this special issue. However, in the last years, approaches aimed at reducing crop water requirements have significantly changed. Remote sensing with satellites or unmanned vehicles, and vegetation spectral measurements, among others, represent in fact the newest frontier of existing technologies. Knowledge of soil hydraulic properties, often forgotten because of the difficulty of their estimation, can also be considered as a new way to reduce water consumption.
Resumo:
Pest management practices that rely on pesticides are growing increasingly less effective and environmentally inappropriate in many cases and the search of alternatives is under focus nowadays. Exclusion of pests from the crop by means of pesticide-treated screens can be an eco-friendly method to protect crops, especially if pests are vectors of important diseases. The mesh size of nets is crucial to determine if insects can eventually cross the barrier or exclude them because there is a great variation in insect size depending on the species. Long-lasting insecticide-treated (LLITN) nets, factory pre-treated, have been used since years to fight against mosquitoes vector of malaria and are able to retain their biological efficacy under field for 3 years. In agriculture, treated nets with different insecticides have shown efficacy in controlling some insects and mites, so they seem to be a good tool in helping to solve some pest problems. However, treated nets must be carefully evaluated because can diminish air flow, increase temperature and humidity and decrease light transmission, which may affect plant growth, pests and natural enemies. As biological control is considered a key factor in IPM nowadays, the potential negative effects of treated nets on natural enemies need to be studied carefully. In this work, the effects of a bifentrhin-treated net (3 g/Kg) (supplied by the company Intelligent Insect Control, IIC) on natural enemies of aphids were tested on a cucumber crop in Central Spain in autumn 2011. The crop was sown in 8x6.5 m tunnels divided in 2 sealed compartments with control or treated nets, which were simple yellow netting with 25 mesh (10 x 10 threads/cm2; 1 x 1 mm hole size). Pieces of 2 m high of the treated-net were placed along the lateral sides of one of the two tunnel compartments in each of the 3 available tunnels (replicates); the rest was covered by a commercial untreated net of a similar mesh. The pest, Aphis gossypii Glover (Aphidae), the parasitoid Aphidius colemani (Haliday) (Braconidae) and the predator Adalia bipunctata L. (Coccinellidae) were artificially introduced in the crop. Weekly sampling was done determining the presence or absence of the pest and the natural enemies (NE) in the 42 plants/compartment as well as the number of insects in 11 marked plants. Environmental conditions (temperature, relative humidity, UV and PAR radiation) were recorded. Results show that when aphids were artificially released inside the tunnels, neither its number/plant nor their distribution was affected by the treated net. A lack of negative effect of the insecticide-treated net on natural enemies was also observed. Adalia bipunctata did not establish in the crop and only a short term control of aphids was observed one week after release. On the other hand, A. colemani did establish in the crop and a more long-term effect on the numbers of aphids/plant was detected irrespective of the type of net. KEY WORDS: bifenthrin-treated net, Adalia bipunctata, Aphidius colemani, Aphis gossypii, semi-field
Resumo:
This article has been extracted from the results of a thesis entitled “Potential bioelectricity production of the Madrid Community Agricultural Regions based on rye and triticale biomass.” The aim was, first, to quantify the potential of rye (Secale Cereale L.) and triticale ( Triticosecale Aestivum L.) biomass in each of the Madrid Community agricultural regions, and second, to locate the most suitable areas for the installation of power plants using biomass. At least 17,339.9 t d.m. of rye and triticale would be required to satisfy the biomass needs of a 2.2 MW power plant, (considering an efficiency of 21.5%, 8,000 expected operating hours/year and a biomass LCP of 4,060 kcal/kg for both crops), and 2,577 ha would be used (which represent 2.79% of the Madrid Community fallow dry land surface). Biomass yields that could be achieved in Madrid Community using 50% of the fallow dry land surface (46,150 ha representing 5.75% of the Community area), based on rye and triticale crops, are estimated at 84,855, 74,906, 70,109, 50,791, 13,481, and 943 t annually for the Campiña, Vegas, Sur Occidental, Área Metropolitana, Lozoya-Somosierra, and Guadarrama regions. The latter represents a bioelectricity potential of 10.77, 9.5, 8.9, 6.44, 1.71, and 0.12 MW, respectively.
Induced intensification: Agricultural change in Bangladesh with implications for Malthus and Boserup
Resumo:
Bangladesh is dominated by a small-holder agrarian economy under extreme stress. Production shortfalls, increasing economic polarization, and chronic malnutrition are persistent, but major famine has been diverted in part by significant growth in agriculture. This recent history is open to both Malthusian and Boserupian interpretations—a history we explore here through a test of the induced intensification thesis of agricultural change. This thesis, framed by variations in the behavior of small-holders, has grown from a simple demand-production relationship to a consideration of the mediating influences on that relationship. The induced intensification thesis is reviewed and tested for 265 households in 6 villages in Bangladesh from 1950–1986. A time-series analysis of an induced intensification model provides relatively high levels of explained variance in cropping intensity (frequency and land productivity) and also indicates the relative impacts of household class, environment, and cropping strategies. On average, the small-holders in question kept pace with the demands on production, although important class and village variations were evident and the proportion of landless households increased. These results, coupled with evidence that agricultural growth involved intensification thresholds, provide clues about Malthusian and Boserupian interpretations of Bangladesh, and suggest that small-holder agriculture there is likely to continue on a “muted” path of growth.
Resumo:
In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of “Complexity Theory” think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal, and ecosystem biology, including all living organisms.
Resumo:
A method was developed to perform real-time analysis of cytosolic pH of arbuscular mycorrhizal fungi in culture using dye and ratiometric measurements (490/450 nm excitations). The study was mainly performed using photometric analysis, although some data were confirmed using image analysis. The use of nigericin allowed an in vivo calibration. Experimental parameters such as loading time and concentration of the dye were determined so that pH measurements could be made for a steady-state period on viable cells. A characteristic pH profile was observed along hyphae. For Gigaspora margarita, the pH of the tip (0–2 μm) was typically 6.7, increased sharply to 7.0 behind this region (9.5 μm), and decreased over the next 250 μm to a constant value of 6.6. A similar pattern was obtained for Glomus intraradices. The pH profile of G. margarita germ tubes was higher when cultured in the presence of carrot (Daucus carota) hairy roots (nonmycorrhizal). Similarly, extraradical hyphae of G. intraradices had a higher apical pH than the germ tubes. The use of a paper layer to prevent the mycorrhizal roots from being in direct contact with the medium selected hyphae with an even higher cytosolic pH. Results suggest that this method could be useful as a bioassay for studying signal perception and/or H+ cotransport of nutrients by arbuscular mycorrhizal hyphae.
Resumo:
Migration of nuclei throughout the mycelium is essential for the growth and differentiation of filamentous fungi. In Aspergillus nidulans, the nudA gene, which is involved in nuclear migration, encodes a cytoplasmic dynein heavy chain. In this paper we use antibodies to characterize the Aspergillus cytoplasmic dynein heavy chain (ACDHC) and to show that the ACDHC is concentrated at the growing tip of the fungal mycelium. We demonstrate that four temperature-sensitive mutations in the nudA gene result in a striking decrease in ACDHC protein. Cytoplasmic dynein has been implicated in nuclear division in animal cells. Because the temperature-sensitive nudA mutants are able to grow slowly with occasional nuclei found in the mycelium and are able to undergo nuclear division, we have created a deletion/disruption nudA mutation and a tightly downregulated nudA mutation. These mutants exhibit a phenotype very similar to that of the temperature-sensitive nudA mutants with respect to growth, nuclear distribution, and nuclear division. This suggests that there are redundant backup motor proteins for both nuclear migration and nuclear division.
Resumo:
A dinâmica ambiental possui capacidade limitada de reciclagem e a crescente utilização resíduos agroindustriais, especialmente na agricultura, pode levar a situações de poluição do solo e demais componentes ambientais. A manutenção da produtividade de ecossistemas agrícolas e naturais depende do processo de transformação da matéria orgânica e, por conseguinte, da biomassa microbiana do solo, e que é responsável pela decomposição e mineralização de resíduos no mesmo. A dinâmica natural dos microrganismos do solo, em constante mudança e adaptação, os torna um indicador sensível às mudanças resultantes de diferentes práticas de manejo agrícola. Sendo assim, conhecer essas alterações e suas interferências é fundamental para identificar estratégias adequadas de manejo, apontando técnicas de utilização adequadas. O objetivo deste trabalho foi avaliar a qualidade de um solo agrícola, cultivado com três variedades de cana-de-açúcar (Saccharum spp.), comparando a utilização de adubação mineral frente à utilização de fertilizante orgânico composto no período final de formação dos perfilhos (120 dias após o plantio). Foi implantado, em condições de campo, o cultivo de cana-de-açúcar (cana planta), utilizando as variedades RB 867515, RB 962869 e RB 855453, onde cada variedade foi cultivada de três formas distintas, sendo elas: plantio controle (CT) sem aplicação de insumos para adubação; plantio orgânico (OG) com aplicação de fertilizante orgânico; e plantio convencional (CV) com aplicação de adubação mineral, seguindo recomendações de adubação após análise química inicial do solo local. Cada parcela possuía 37 m2, com 5 sulcos de 5,0 m de comprimento e espaçamento de 1,5 m entrelinhas, sendo os três sulcos centrais formando a área útil. De acordo com a variedade e o tipo de adubação, foram formados nove tratamentos: T1 86CT, T2 96CT, T3 85CT, T4 6OG, T5 96OG, T6 85OG, T7 86CV, T8 96CV e T9 85CV, com delineamento estatístico de blocos ao acaso e quatro repetições. Os parâmetros químicos do solo analisados foram macronutrientes e micronutrientes; os parâmetros microbiológicos foram carbono da biomassa microbiana (CBM), respiração basal do solo (RBS), quociente metabólico (qCO2), número mais provável de fungos e bactérias do solo (NMP); e, por fim, a produtividade agrícola (t/ha). Os resultados foram submetidos a análise de variância (ANOVA) e à comparação das médias através do teste de Tukey (10%). Também foi realizada a análise de variância dos dados e correlação cofenética de Pearson para formação de dendogramas. Com base no período estudado, considerado como fase crítica da formação do canavial, concluiu-se que os parâmetros químicos que evidenciaram alterações no solo foram pH e os macronutrientes Mg, Al e SB, sendo os tratamentos orgânicos equivalentes e/ou melhores que os tratamentos convencionais. Para os parâmetros microbiológicos, o NMP de fungos apresentou os maiores valores nos tratamentos convencionais e controle. A produtividade agrícola não foi influenciada pelos diferentes tratamentos e insumos utilizados, independente da variedade de cana-de-açúcar utilizada. Por fim, foram observadas correlações positivas entre as variáveis CTC e quociente metabólico (qCO2) apontando potencial melhoria da qualidade do solo, com o emprego de insumos orgânicos
Resumo:
The severity of the environmental situation in agriculture is described. Progress made so far is then listed and critiqued. Misconceptions that sustainable agriculture cannot produce as much food as industrial agriculture, as well as the false impression that sustainably-produced foods must cost more are discussed. In conclusion, the only force strong enough to convince farmers to switch to sustainable practices is the consumer. Advertisements and educational campaigns will inform consumers about industrial agriculture. The shift in demand for sustainable goods will eventually cause prices to fall, allowing more consumers to purchase these formally expensive goods. This process will make a sustainable agricultural revolution possible and profitable.