945 resultados para Full Hiding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure is evaluated taking into account models with different degree of detail. In particular, we have studied this matter from a two-dimensional (2D) finite element model to a fully coupled three-dimensional (3D) multi-body finite element model. The vehicle and track are coupled via a non-linear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between wheel and rail. Distributed elevation irregularities are generated based on power spectral density (PSD) distributions which are taken into account for the interaction. The numerical simulations are performed in the time domain, using a direct integration method for solving the transient problem due to the contact nonlinearities. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete 2D models and continuum 3D models, as wheel as assessing the validity of evaluating the dynamic loading on the track with simplified 2D models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highest solar cell efficiencies both for c-Si and mc-Si were reached using template based texturing processes. Especially for mc-Si the benefit of a defined texture, the so called honeycomb texture, was demonstrated impressively. However, up until now, no industrially feasible process has been available to pattern the necessary etching masks with the sufficient resolution. Roller-Nanoimprint Lithography (Roller-NIL) has the potential to overcome these limitations and to allow high quality pattern transfers, even in the sub-micron regime, in continuous in-line processes. Therefore, this etch-mask patterning technique is a suitable solution to bring such elaborate features like the honeycomb texture to an industrial realization. Beyond that, this fast printing-like technology opens up new possibilities to introduce promising concepts like photonic structures into solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays one of the challenges of materials science is to find new technologies that will be able to make the most of renewable energies. An example of new proposals in this field are the intermediate-band (IB) materials, which promise higher efficiencies in photovoltaic applications (through the intermediate band solar cells), or in heterogeneous photocatalysis (using nanoparticles of them, for the light-induced degradation of pollutants or for the efficient photoevolution of hydrogen from water). An IB material consists in a semiconductor in which gap a new level is introduced [1], the intermediate band (IB), which should be partially filled by electrons and completely separated of the valence band (VB) and of the conduction band (CB). This scheme (figure 1) allows an electron from the VB to be promoted to the IB, and from the latter to the CB, upon absorption of photons with energy below the band gap Eg, so that energy can be absorbed in a wider range of the solar spectrum and a higher current can be obtained without sacrificing the photovoltage (or the chemical driving force) corresponding to the full bandgap Eg, thus increasing the overall efficiency. This concept, applied to photocatalysis, would allow using photons of a wider visible range while keeping the same redox capacity. It is important to note that this concept differs from the classic photocatalyst doping principle, which essentially tries just to decrease the bandgap. This new type of materials would keep the full bandgap potential but would use also lower energy photons. In our group several IB materials have been proposed, mainly for the photovoltaic application, based on extensively doping known semiconductors with transition metals [2], examining with DFT calculations their electronic structures. Here we refer to In2S3 and SnS2, which contain octahedral cations; when doped with Ti or V an IB is formed according to quantum calculations (see e.g. figure 2). We have used a solvotermal synthesis method to prepare in nanocrystalline form the In2S3 thiospinel and the layered compound SnS2 (which when undoped have bandgaps of 2.0 and 2.2 eV respectively) where the cation is substituted by vanadium at a ?10% level. This substitution has been studied, characterizing the materials by different physical and chemical techniques (TXRF, XRD, HR-TEM/EDS) (see e.g. figure 3) and verifying with UV spectrometry that this substitution introduces in the spectrum the sub-bandgap features predicted by the calculations (figure 4). For both sulphide type nanoparticles (doped and undoped) the photocatalytic activity was studied by following at room temperature the oxidation of formic acid in aqueous suspension, a simple reaction which is easily monitored by UV-Vis spectroscopy. The spectral response of the process is measured using a collection of band pass filters that allow only some wavelengths into the reaction system. Thanks to this method the spectral range in which the materials are active in the photodecomposition (which coincides with the band gap for the undoped samples) can be checked, proving that for the vanadium substituted samples this range is increased, making possible to cover all the visible light range. Furthermore it is checked that these new materials are more photocorrosion resistant than the toxic CdS witch is a well know compound frequently used in tests of visible light photocatalysis. These materials are thus promising not only for degradation of pollutants (or for photovoltaic cells) but also for efficient photoevolution of hydrogen from water; work in this direction is now being pursued.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an adaptive control for the auxiliary circuit, called ARCN (Auxiliary Resonant Commutating Network), used to achieve ZVS in full active bridge converters under a wide load range. Depending on the load conditions, the proposed control adapts the timing of the ARCN to minimize the losses. The principle of operation and implementation considerations are presented for a three phase full active bridge converter, proposing different methods to implement the control according to the specifications. The experimental results shown verify the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive by program transformation Pierre Crégut s full-reducing Krivine machine KN from the structural operational semantics of the normal order reduction strategy in a closure-converted pure lambda calculus. We thus establish the correspondence between the strategy and the machine, and showcase our technique for deriving full-reducing abstract machines. Actually, the machine we obtain is a slightly optimised version that can work with open terms and may be used in implementations of proof assistants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olivier Danvy and others have shown the syntactic correspondence between reduction semantics (a small-step semantics) and abstract machines, as well as the functional correspondence between reduction-free normalisers (a big-step semantics) and abstract machines. The correspondences are established by program transformation (so-called interderivation) techniques. A reduction semantics and a reduction-free normaliser are interderivable when the abstract machine obtained from them is the same. However, the correspondences fail when the underlying reduction strategy is hybrid, i.e., relies on another sub-strategy. Hybridisation is an essential structural property of full-reducing and complete strategies. Hybridisation is unproblematic in the functional correspondence. But in the syntactic correspondence the refocusing and inlining-of-iterate-function steps become context sensitive, preventing the refunctionalisation of the abstract machine. We show how to solve the problem and showcase the interderivation of normalisers for normal order, the standard, full-reducing and complete strategy of the pure lambda calculus. Our solution makes it possible to interderive, rather than contrive, full-reducing abstract machines. As expected, the machine we obtain is a variant of Pierre Crégut s full Krivine machine KN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commonly accepted approach to specifying libraries of concurrent algorithms is a library abstraction. Its idea is to relate a library to another one that abstracts away from details of its implementation and is simpler to reason about. A library abstraction relation has to validate the Abstraction Theorem: while proving a property of the client of the concurrent library, the library can be soundly replaced with its abstract implementation. Typically a library abstraction relation, such as linearizability, assumes a complete information hiding between a library and its client, which disallows them to communicate by means of shared memory. However, such way of communication may be used in a program, and correctness of interactions on a shared memory depends on the implicit contract between the library and the client. In this work we approach library abstraction without any assumptions about information hiding. To be able to formulate the contract between components of the program, we augment machine states of the program with two abstract states, views, of the client and the library. It enables formalising the contract with the internal safety, which requires components to preserve each other's views whenever their command is executed. We define the library a a correspondence between possible uses of a concrete and an abstract library. For our library abstraction relation and traces of a program, components of which follow their contract, we prove an Abstraction Theorem. RESUMEN. La técnica más aceptada actualmente para la especificación de librerías de algoritmos concurrentes es la abstracción de librerías (library abstraction). La idea subyacente es relacionar la librería original con otra que abstrae los detalles de implementación y conóon que describa dicha abstracción de librerías debe validar el Teorema de Abstracción: durante la prueba de la validez de una propiedad del cliente de la librería concurrente, el reemplazo de esta última por su implementación abstracta es lógicamente correcto. Usualmente, una relación de abstracción de librerías como la linearizabilidad (linearizability), tiene como premisa el ocultamiento de información entre el cliente y la librería (information hiding), es decir, que no se les permite comunicarse mediante la memoria compartida. Sin embargo, dicha comunicación ocurre en la práctica y la correctitud de estas interacciones en una memoria compartida depende de un contrato implícito entre la librería y el cliente. En este trabajo, se propone un nueva definición del concepto de abtracción de librerías que no presupone un ocultamiento de información entre la librería y el cliente. Con el fin de establecer un contrato entre diferentes componentes de un programa, extendemos la máquina de estados subyacente con dos estados abstractos que representan las vistas del cliente y la librería. Esto permite la formalización de la propiedad de seguridad interna (internal safety), que requiere que cada componente preserva la vista del otro durante la ejecuci on de un comando. Consecuentemente, se define la relación de abstracción de librerías mediante una correspondencia entre los usos posibles de una librería abstracta y una concreta. Finalmente, se prueba el Teorema de Abstracción para la relación de abstracción de librerías propuesta, para cualquier traza de un programa y cualquier componente que satisface los contratos apropiados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia la reducción plena (‘full reduction’ en inglés) en distintos cálculos lambda. 1 En esencia, la reducción plena consiste en evaluar los cuerpos de las funciones en los lenguajes de programación funcional con ligaduras. Se toma el cálculo lambda clásico (i.e., puro y sin tipos) como el sistema formal que modela el paradigma de programación funcional. La reducción plena es una técnica fundamental cuando se considera a los programas como datos, por ejemplo para la optimización de programas mediante evaluación parcial, o cuando algún atributo del programa se representa a su vez por un programa, como el tipo en los demostradores automáticos de teoremas actuales. Muchas semánticas operacionales que realizan reducción plena tienen naturaleza híbrida. Se introduce formalmente la noción de naturaleza híbrida, que constituye el hilo conductor de todo el trabajo. En el cálculo lambda la naturaleza híbrida se manifiesta como una ‘distinción de fase’ en el tratamiento de las abstracciones, ya sean consideradas desde fuera o desde dentro de si mismas. Esta distinción de fase conlleva una estructura en capas en la que una semántica híbrida depende de una o más semánticas subsidiarias. Desde el punto de vista de los lenguajes de programación, la tesis muestra como derivar, mediante técnicas de transformación de programas, implementaciones de semánticas operacionales que reducen plenamente a partir de sus especificaciones. Las técnicas de transformación de programas consisten en transformaciones sintácticas que preservan la equivalencia semántica de los programas. Se ajustan las técnicas de transformación de programas existentes para trabajar con implementaciones de semánticas híbridas. Además, se muestra el impacto que tiene la reducción plena en las implementaciones que utilizan entornos. Los entornos son un ingrediente fundamental en las implementaciones realistas de una máquina abstracta. Desde el punto de vista de los sistemas formales, la tesis desvela una teoría novedosa para el cálculo lambda con paso por valor (‘call-by-value lambda calculus’ en inglés) que es consistente con la reducción plena. Dicha teoría induce una noción de equivalencia observacional que distingue más puntos que las teorías existentes para dicho cálculo. Esta contribución ayuda a establecer una ‘teoría estándar’ en el cálculo lambda con paso por valor que es análoga a la ‘teoría estándar’ del cálculo lambda clásico propugnada por Barendregt. Se presentan resultados de teoría de la demostración, y se sugiere como abordar el estudio de teoría de modelos. ABSTRACT This thesis studies full reduction in lambda calculi. In a nutshell, full reduction consists in evaluating the body of the functions in a functional programming language with binders. The classical (i.e., pure untyped) lambda calculus is set as the formal system that models the functional paradigm. Full reduction is a prominent technique when programs are treated as data objects, for instance when performing optimisations by partial evaluation, or when some attribute of the program is represented by a program itself, like the type in modern proof assistants. A notable feature of many full-reducing operational semantics is its hybrid nature, which is introduced and which constitutes the guiding theme of the thesis. In the lambda calculus, the hybrid nature amounts to a ‘phase distinction’ in the treatment of abstractions when considered either from outside or from inside themselves. This distinction entails a layered structure in which a hybrid semantics depends on one or more subsidiary semantics. From a programming languages standpoint, the thesis shows how to derive implementations of full-reducing operational semantics from their specifications, by using program transformations techniques. The program transformation techniques are syntactical transformations which preserve the semantic equivalence of programs. The existing program transformation techniques are adjusted to work with implementations of hybrid semantics. The thesis also shows how full reduction impacts the implementations that use the environment technique. The environment technique is a key ingredient of real-world implementations of abstract machines which helps to circumvent the issue with binders. From a formal systems standpoint, the thesis discloses a novel consistent theory for the call-by-value variant of the lambda calculus which accounts for full reduction. This novel theory entails a notion of observational equivalence which distinguishes more points than other existing theories for the call-by-value lambda calculus. This contribution helps to establish a ‘standard theory’ in that calculus which constitutes the analogous of the ‘standard theory’ advocated by Barendregt in the classical lambda calculus. Some prooftheoretical results are presented, and insights on the model-theoretical study are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full Hybrid lighting-CPV prototype has been assembled. This new concept mixes a classical CPV module with the production of light for illumination without a double conversion (solar energy to electricity and electricity to light) allowing a higher efficiency to the whole system. The present prototype is based on a commercial CPV module that has been adapted in order to be hybrid, adjusting the receivers to pass the fibers into the module, inserting a holder to adjust x,y and z position of the fibers and changing the original parquet of lenses by a bifocal one composed most of the original lenses and the inclusion of other lenses in the position of the corners. Results show that with a minimal loss in the CPV part, a luminous flux is obtained that can be used to illuminate. Adding an additional electrical lamp and a light sensor that enables this lamp when no light from the sun is received, a 38% saving on lighting electricity is expected in Madrid during a year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have succeeded in constructing a stable full-length cDNA clone of strain H77 (genotype 1a) of hepatitis C virus (HCV). We devised a cassette vector with fixed 5′ and 3′ termini and constructed multiple full-length cDNA clones of H77 in a single step by cloning of the entire ORF, which was amplified by long reverse transcriptase–PCR, directly into this vector. The infectivity of two complete full-length cDNA clones was tested by the direct intrahepatic injection of a chimpanzee with RNA transcripts. However, we found no evidence for HCV replication. Sequence analysis of these and 16 additional full-length clones revealed that seven clones were defective for polyprotein synthesis, and the remaining nine clones had 6–28 amino acid mutations in the predicted polyprotein compared with the consensus sequence of H77. Next, we constructed a consensus chimera from four of the full-length cDNA clones with just two ligation steps. Injection of RNA transcripts from this consensus clone into the liver of a chimpanzee resulted in viral replication. The sequence of the virus recovered from the chimpanzee was identical to that of the injected RNA transcripts. This stable infectious molecular clone should be an important tool for developing a better understanding of the molecular biology and pathogenesis of HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is funded by RTE, Paris, France

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to synthesize high molecular weight inulin was transferred to potato plants via constitutive expression of the 1-SST (sucrose:sucrose 1-fructosyltransferase) and the 1-FFT (fructan: fructan 1-fructosyltransferase) genes of globe artichoke (Cynara scolymus). The fructan pattern of tubers from transgenic potato plants represents the full spectrum of inulin molecules present in artichoke roots as shown by high-performance anion exchange chromatography, as well as size exclusion chromatography. These results demonstrate in planta that the enzymes sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase are sufficient to synthesize inulin molecules of all chain lengths naturally occurring in a given plant species. Inulin made up 5% of the dry weight of transgenic tubers, and a low level of fructan production also was observed in fully expanded leaves. Although inulin accumulation did not influence the sucrose concentration in leaves or tubers, a reduction in starch content occurred in transgenic tubers, indicating that inulin synthesis did not increase the storage capacity of the tubers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication of many viral and subviral pathogens as well as the amplification of certain cellular genes proceeds via a rolling circle mechanism. For potato spindle tuber (PSTVd) and related viroids, the possible role of a circular (−)strand RNA as a template for synthesis of (+)strand progeny is unclear. Infected plants appear to contain only multimeric linear (−)strand RNAs, and attempts to initiate infection with multimeric (−)PSTVd RNAs generally have failed. To examine critically the infectivity of monomeric (−)strand viroid RNAs, we have developed a ribozyme-based expression system for the production of precisely full length (−)strand RNAs whose termini are capable of undergoing facile circularization in vitro. Mechanical inoculation of tomato seedlings with electrophoretically purified (−)PSTVd RNA led to a small fraction of plants becoming infected whereas parallel assays with an analogous tomato planta macho viroid (−)RNA resulted in a much larger fraction of infected plants. Ribozyme-mediated production of (−)PSTVd RNA in transgenic plants led to the appearance of monomeric circular (−)PSTVd RNA and large amounts of (+)PSTVd progeny. No monomeric circular (−)PSTVd RNA could be detected in naturally infected plants by using either ribonuclease protection or electrophoresis under partially denaturing conditions. Although not a component of the normal replicative pathway, precisely full length (−)PSTVd RNA appears to contain all of the structural and regulatory elements necessary for initiation of viroid replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prion diseases seem to be caused by a conformational change of the prion protein (PrP) from the benign cellular form PrPC to the infectious scrapie form PrPSc; thus, detailed information about PrP structure may provide essential insights into the mechanism by which these diseases develop. In this study, the secondary structure of the recombinant Syrian hamster PrP of residues 29–231 [PrP(29–231)] is investigated by multidimensional heteronuclear NMR. Chemical shift index analysis and nuclear Overhauser effect data show that PrP(29–231) contains three helices and possibly one short β-strand. Most striking is the random-coil nature of chemical shifts for residues 30–124 in the full-length PrP. Although the secondary structure elements are similar to those found in mouse PrP fragment PrP(121–231), the secondary structure boundaries of PrP(29–231) are different from those in mouse PrP(121–231) but similar to those found in the structure of Syrian hamster PrP(90–231). Comparison of resonance assignments of PrP(29–231) and PrP(90–231) indicates that there may be transient interactions between the additional residues and the structured core. Backbone dynamics studies done by using the heteronuclear [1H]-15N nuclear Overhauser effect indicate that almost half of PrP(29–231), residues 29–124, is highly flexible. This plastic region could feature in the conversion of PrPC to PrPSc by template-assisted formation of β-structure.