955 resultados para Freshwater biology.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rising sea temperatures are increasing the incidences of mass coral bleaching (the dissociation of the coral-algal symbiosis) and coral mortality. In this study, the effects of bleaching (induced by elevated light and temperature) on the condition of symbiotic dinoflagellates (Symbiodinium sp.) within the tissue of the hard coral Stylophora pistillata (Esper) were assessed using a suite of techniques. Bleaching of S. pistillata was accompanied by declines in the maximum potential quantum yield of photosynthesis (F-v/F-m, measured using pulse amplitude modulated [PAM] fluorometry), an increase in the number of Sytox-green-stained algae (indicating compromised algal membrane integrity and cell death), an increase in 2',7'-dichlorodihydrofluroscein diacetate (H(2)DCFDA)stained algae (indicating increased oxidative stress), as well as ultrastructural changes (vacuolisation, losses of chlorophyll, and an increase in accumulation bodies). Algae expelled from S. pistillata exhibited a complete disorganisation of cellular contents; expelled cells contained only amorphous material. In situ samples taken during a natural mass coral bleaching event on the Great Barrier Reef in February 2002 also revealed a high number of Sytox-labelled algae cells in symbio. Dinoflagellate degeneration during bleaching seems to be similar to the changes resulting from senescence-phase cell death in cultured algae. These data support a role for oxidative stress in the mechanism of coral bleaching and highlight the importance of algal degeneration during the bleaching of a reef coral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent episodes of mass coral bleaching, the loss of symbiotic dinoflagellates or photosynthetic pigment from hermatypic corals, have been triggered by elevated sea temperatures. Photosynthetic irradiance is an important secondary factor. Host based pigments (pocilloporins or Green Fluorescent Protein homologues) have been proposed to reduce the impact of elevated temperature by shading the dinoflagellate symbionts of corals, thereby reducing light stress. This study investigates this phenomenon in the reef-building coral Acropora aspera from Heron Island Research Station (Great Barrier Reef, Australia), which occurs as 3 distinct colour morphs. Experimental data showed that the host pigments are photoprotective at normal temperatures or

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp. 4 the upper shore. These species were exposed to a range of temperatures (15-40 degreesC) in aquaria for up to 6 h. At 20 degreesC F. exquisitus exhibited a mean gill ventilation rate of 26 +/- 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 +/- 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 degreesC) to high temperature (35 degreesC) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus. While both species emerged from the water at high temperatures (>30 degreesC) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At Heron Island reef, Great Barrier Reef Australia, biomass densities and mean wet mass of Ward's damselfish Pomacentrus wardi and the jewelled blenny Salarias fasciatus were not significantly different at 2-37 v. 2-95 g m(-2) and 8-7 v. 7-9 g, respectively. Whereas S. fasciatus significantly exceeded P. wardi in (1) total number of bites per day (3427 v. 1155), (2) the mass of epilithic algal community consumed per bite (2-19 1,. 0-14mg) and (3) total organic carbon consumed per day (487-31 v. 35-46 mg C m(-2) day(-1)). Territorial behaviour differed also between the two species. Pomacentrus wardi chased from their territories a smaller proportion of blennies than roving grazers (i.e. scarids, acanthurids, siganids and pomacentrids) relative to S. fasciatus. Salarias fasciatus chased c. 90% of other blennies from their territories, while chasing only c. 20% of all damsels that entered. Both P. wardi and S. fasciatus rarely chased non-grazers. The chasing behaviour of S. fascialus was size dependent, with resident fish chasing only individuals of its own family (i.e. Blenniidae) that were the same or smaller size. Pomacentrus wardi may have tolerated S. fasciatus grazing within its territory, as it contributes to territory defence from other blennies. The possibility that the interaction between the two species is facilitative, rather than competitive, is discussed. It was concluded that salariine blennies play an important, and previously underestimated role in coral reef trophodynamics. (C) 2004 The Fisheries Society of the British Isles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25-50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60-70 cm curved carapace length, (CCL) or 15-20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the Juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From June 1995 to August 2002 we assessed green turtle (Chelonia mydas) population structure and survival, and identified human impact, at Bahia de los Angeles, a large bay that was once the site of the greatest sea turtle harvest rates in the Gulf of California, Mexico. Turtles were captured live with entanglement nets and mortality was quantified through stranding surveys and flipper tag recoveries. A total of 14,820 netting hours (617.5 d) resulted in 255 captures of 200 green turtles. Straight-carapace length and mass ranged from 46.0-100.0 cm (mean = 74.3 +/- 0.7 cm) and 14.5-145.0 kg (mean = 61.5 +/- 1.7 kg), respectively. The size-frequency distribution remained stable during all years and among all capture locations. Anthropogenic-derived injuries ranging from missing flippers to boat propeller scars were present in 4% of captured turtles. Remains of 18 turtles were found at dumpsites, nine stranded turtles were encountered in the study area, and flipper tags from seven turtles were recovered. Survival was estimated at 0.58 for juveniles and 0.97 for adults using a joint live-recapture and dead-recovery model (Burnham model). Low survival among juveniles, declining annual catch per unit effort, and the presence of butchered carcasses indicated human activities continue to impact green turtles at this foraging area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples of the cyanobacterium Microcystis aeruginosa from a small pond were used in laboratory experiments with a grid-stirred tank to quantify the effect of turbulent mixing on colony size. Turbulent dissipation in the tank was varied from 10(-9) m(2) s(-3) to 10(-4) m(2) s(-3), covering the range of turbulence intensities experienced by M. aeruginosa colonies in the field and exceeding the maximum dissipation by two orders of magnitude. Large colonies broke up into smaller colonies during the experiments; the mass fraction of colonies with diameter less than 200 mum increased over time. Colony disaggregation was observed to increase with turbulent dissipation. The maximum stable colony diameter across all experiments was in the range 220-420 mum. The overall change in size distribution during the experiments was relatively small, and the colony size distribution remained very broad throughout the experiments. Since colony size affects migration velocity, susceptibility to grazing and surface area to volume ratios, more work is needed to determine how to best represent this broad size distribution when modelling M. aeruginosa populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photoacclimation of endolithic algae ( of the genus Ostreobium) inhabiting the skeleton of the Mediterranean coral Oculina patagonica during a bleaching event was examined. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques in situ were used to assess the photosynthetic efficiency of endolithic algae in the coral skeleton and the symbiotic dinoflagellates (zooxanthellae) in the coral tissue. Relative photosynthetic electron transport rates (ETRs) of the endolithic algae under bleached areas of the colony were significantly higher than those of endolithic algae from a healthy section of the colony and those of zooxanthellae isolated from the same section. Endolithic algae under healthy parts of the colony demonstrated an ETRmax of 16.5% that of zooxanthellae from tissue in the same section whereas endolithic algae under bleached sections showed ETRmax values that were 39% of those found for healthy zooxanthellae. The study demonstrates that endolithic algae undergo photoacclimation with increased irradiance reaching the skeleton. As PAM fluorometry has become a major tool for assessing levels of stress and bleaching in corals, the importance of considering the contribution of the endolithic algae to the overall chlorophyll fluorescence measured is highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements in the macro-tidal Daly Estuary show that the presence of an undular tidal bore contributed negligibly to the dissipation of tidal energy. No recirculation bubble was observed between a trough and the following wave crest in the lee waves following the undular bore. This differs to stationary undular bores in laboratory experiments at larger Froude numbers where a recirculation bubble exists. Secondary motions and the turbulence generated by the undular bore had no measurable influence on the sediment transport. This situation contrasts with the intense sediment resuspension observed in breaking tidal bores. The tidally averaged sediment budget in the Daly Estuary was controlled by the asymmetry of tidal currents. The undular bore may widen the river by breaking along the banks that it undercuts, leading to bank slippage. A patch of river-wide macro-turbulence of 3-min duration occurred about 20 min after the passage of the bore during accelerating tidal currents. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent work suggests the Montastraea annularis species complex consists of at least three species, which can be distinguished qualitatively in the field using features related to colony growth (e.g. overall growth form. bumpiness, growth along the colony edge). However, when whole colonies are not available and surfaces are eroded, identification becomes problematic when relying on such characteristics. Characters based on internal skeletal structures are less prone to loss due to taphonomic processes. Previous work has shown that internal corallite architectural features measured in transverse thin sections can be used to distinguish species. To determine whether internal colony-level features measured on X-radiographs can be used. eight characters related to corallite budding and accretionary growth were measured on specimens representing three modern members of the M. annularis species complex (M. annularis, M. flaveolata and M. franksi), as well as two fossil forms (columnar and organ-pipe). All eight characters showed significant differences among species. Discriminant function analysis using seven of these characters resulted in distinct species groupings In canonical scores plots and a 100% classification success for specimens from Panama. These results suggest that measurements made on X-radiographs provide a useful tool for quantitatively distinguishing members of the M. annularis complex as well as between other massive reef corals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27 degrees 05'S, 153 degrees 08'E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January-March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2h) C-14 incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 degrees C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km(2) over 55 days with an average biomass of 210 g(dw)(-1) m(-2) in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7-80.6 mu M) and dissolved organic carbon (2.5-24.7 mg L-1), associated with low pH values (3.8-6.7). C-14 incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 mu M Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 mu M EDTA) and phosphorus (5 mu M PO4-3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of sex-biased fishing and marine reserve protection on the mud crab Scylla serrata was examined by comparing the catch rates (catch-per-unit-effort, CPUE), mean size, sex ratios and movement of crabs in 2 coastal marine reserves (1.9 and 5.7 km(2)) and 4 fished non-reserve sites in subtropical Australia. Five years after closure, both marine reserves supported higher catch rates and a larger mean size of S. serrata than non-reserve sites. Males dominated catches of S. serrata in both marine reserves, where CPUE was at least twice as high within the reserves compared to non-reserve sites. Male crabs were also 10% larger in the reserves compared to adjacent fished areas, and of the total male catch, over 70% were equal to or greater than legal size compared to less than 50% outside the reserves. The sex ratio of S. serrata was skewed towards females in all nonreserve sites, which was most likely a result of the ban on taking female S. serrata in Moreton Bay. As only male crabs of >= 15 cm CW made up the S. serrata fishery in Moreton Bay, sex ratios of mature male and female crabs were examined, revealing a strong skew (2:1) towards mature males in both marine reserves. Of the 472 S. serrata captured in this study, 338 were tagged in the reserves in order to document movement of the crabs between the reserve and non-reserve sites. Of the 37 recaptured crabs, 73% were recorded inside the reserves, with some spillover (i.e. cross-boundary movement) of crabs recorded in fished areas. This study demonstrates the effectiveness of small (< 6 km(2)) marine reserves for sex-biased exploited fisheries species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Growing concern associated with threats to the marine environment has resulted in an increased demand for marine reserves that conserve representative and adequate examples of biodiversity. Often, the decisions about where to locate reserves must be made in the absence of detailed information on the patterns of distribution of the biota. Alternative approaches are required that include defining habitats using surrogates for biodiversity. Surrogate measures of biodiversity enable decisions about where to locate marine reserves to be made more reliably in the absence of detailed data on the distribution of species. 2. Intertidal habitat types derived using physical properties of the shoreline were used as a surrogate for intertidal biodiversity to assist with the identification of sites for inclusion in a candidate system of intertidal marine reserves for 17 463 km of the mainland coast of Queensland, Australia. This represents the first systematic approach, on essentially one-dimensional data, using fine-scale (tens to hundreds of metres) intertidal habitats to identify a system of marine reserves for such a large length of coast. A range of solutions would provide for the protection of a representative example of intertidal habitats in Queensland. 3. The design and planning of marine and terrestrial protected areas systems should not be undertaken independently of each other because it is likely to lead to inadequate representation of intertidal habitats in either system. The development of reserve systems specially designed to protect intertidal habitats should be integrated into the design of terrestrial and marine protected area systems. Copyright (c) 2005 John Wiley & Sons, Ltd.