927 resultados para Food Industry
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Chronic diseases are the leading cause of premature death and disability in the world with overnutrition a primary cause of diet-related ill health. Excess energy intake, saturated fat, sugar, and salt derived from processed foods are a major cause of disease burden. Our objective is to compare the nutritional composition of processed foods between countries, between food companies, and over time. Design: Surveys of processed foods will be done in each participating country using a standardized methodology. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from the product label, or from the manufacturer. Foods will be categorized into 14 groups and 45 categories for the primary analyses which will compare mean levels of nutrients at baseline and over time. Initial commitments to collaboration have been obtained from 21 countries. Conclusions: This collaborative approach to the collation and sharing of data will enable objective and transparent tracking of processed food composition around the world. The information collected will support government and food industry efforts to improve the nutrient composition of processed foods around the world.
Resumo:
Human infections with EHEC such as O157:H7 have been a great concern for worldwide food-industry surveillance. This pathogen is commonly associated with bloody diarrhea that can evolve to the life-threatening hemolytic uremic syndrome. Animals are the natural reservoir where this pathogen remains asymptomatically, in steps of ingestion and colonization of the bowel. The bacterium is shed in the feces, contaminating the surroundings, including water and food that are directed for human consumption. A major player in this colonization process is intimin, an outer membrane adhesion molecule encoded by the E. coli attachment and effacement (eae) gene that has been shown to be essential for intimate bacterial attachment to eukaryotic host cells. In an attempt to reduce the colonization of animal reservoirs with EHEC O157:H7, we designed a vaccine model to induce an immune response against intimin gamma. The model is based on its recombinant expression in attenuated Salmonella, used as a suitable vaccine vector because of its recognized ability to deliver recombinant antigens and to elicit all forms of immunity: mucosal, systemic, and humoral responses. To test this model, mice were orally immunized with a S. enterica serovar Typhimurium strain carrying the pYA3137eaeA vector, and challenged with E. coli O157:H7. Here we show that immunization induced the production of high levels of specific IgG and IgA antibodies and promoted reduction in the fecal shedding of EHEC after challenge. The live recombinant vaccine reported herein may contribute to the efforts of reducing animal intestinal mucosa colonization.
Resumo:
Lupulones, hops beta-acids, are one of the main constituents of the hops resin and have an important contribution to the overall bacteriostatic activity of hops during beer brewing. The use of lupulones as natural alternatives to antibiotics is increasing in the food industry and also in bioethanol production. However, lupulones are easy oxidizable and have been shown to be very reactive toward 1-hydroxyethyl radical with apparent bimolecular rate constants close to diffusion control k = 2.9 x 10(8) and 2.6 x 10(8) L mol(-1) s(-1) at 25.0 +/- 0.2 degrees C in ethanol water solution (10% of ethanol (v/v)) as probed by EPR and ESI-IT-MS/MS spin-trapping competitive kinetics, respectively. The free energy change for an electron-transfer mechanism is Delta G degrees = 106 kJ/mol as calculated from the oxidation peak potential experimentally determined for lupulones (1.1 V vs NHE) by cyclic voltammetry and the reported reduction potential for 1-hydroxyethyl radical. The major reaction products identified by LC-ESI-IT-MS/MS and ultrahigh-resolution accurate mass spectrometry (orbitrap FT-MS) are hydroxylated lupulone derivatives and 1-hydroxyethyl radical adducts. The lack of pH dependence for the reaction rate constant, the calculated free energy change for electron transfer, and the main reaction products strongly suggest the prenyl side chains at the hops beta-acids as the reaction centers rather than the beta,beta'-triketone moiety.
Resumo:
The aim of this study was to investigate the effects of the use of chlorine or ozone as sanitizing agents in the water of chicken immersion chilling, using the residual levels usually applied in Brazil (1.5 ppm), comparing the effects of these treatments on the microbiological, physicochemical, and sensory characteristics of carcasses. Chicken carcasses were chilled in water (4 degrees C) with similar residual levels of ozone and chlorine until reaching temperatures below 7 degrees C (around 45 min). The stability of carcasses was assessed during 15 days of storage at 2 +/- 1 degrees C. Microbiological, surface color (L*, a*, b* parameters), pH value, lipid oxidation (thiobarbituric acid reactive substances index), and sensory evaluation (on a 9-point hedonic scale for odor and appearance) analyses were carried out. The presence of Salmonella was not detected, coagulase-positive staphylococci counts were below 10(2) CFU/ml of rinse fluid, and Escherichia coil and total coliform counts were below 10(5) CFU/ml of rinse fluid until the end of the storage period for both treatments. Psychrotrophic microorganism counts did not differ (P > 0.05) between chlorine and ozone treatments, and both values were near 10(9) CFU/ml of rinse fluid after 15 days at 4 +/- 1 degrees C. pH values did not differ between treatments (P > 0.05) or during the storage period (P > 0.05). In addition, neither chlorine nor ozone treatment showed differences (P > 0.05) in the lipid oxidation of carcasses; however, the thiobarbituric acid reactive substances index of both treatments increased (P <= 0.05) during the storage period, reaching values of approximately 0.68 mg of malonaldehyde per kg. Samples from both treatments did not differ (P > 0.05) in their acceptance scores for odor and overall appearance, but in the evaluation of color, ozone showed an acceptance score significantly higher (P <= 0.05) than that for the chlorine treatment. In general, under the conditions tested, ozone showed results similar to the results for chlorine in the disinfection of chicken carcasses in the immersion chilling, which may indicate its use as a substitute for chlorine in poultry slaughterhouses.
Resumo:
Capability to produce antilisterial bacteriocins by lactic acid bacteria (LAB) can be explored by the food industry as a tool to increase the safety of foods. Furthermore, probiotic activity of bacteriogenic LAB brings extra advantages to these strains, as they can confer health benefits to the consumer. Beneficial effects depend on the ability of the probiotic strains to maintain viability in the food during shelf-life and to survive the natural defenses of the host and multiply in the gastrointestinal tract (GIT). This study evaluated the probiotic potential of a bacteriocinogenic Lactobacillus plantarum strain (Lb. plantarum ST16Pa) isolated from papaya fruit and studied the effect of encapsulation in alginate on survival in conditions simulating the human GIT. Good growth of Lb. plantarum ST16Pa was recorded in MRS broth with initial pH values between 5.0 and 9.0 and good capability to survive in pH 4.0, 11.0 and 13.0. Lb. plantarum ST16Pa grew well in the presence of oxbile at concentrations ranging from 0.2 to 3.0%. The level of auto-aggregation was 37%, and various degrees of co-aggregation were observed with different strains of Lb. plantarum, Enterococcus spp., Lb. sakei and Listeria, which are important features for probiotic activity. Growth was affected negatively by several medicaments used for human therapy, mainly anti-inflammatory drugs and antibiotics. Adhesion to Caco-2 cells was within the range reported for other probiotic strains, and PCR analysis indicated that the strain harbored the adhesion genes mapA, mub and EF-Tu. Encapsulation in 2, 3 and 4% alginate protected the cells from exposure to 1 or 2% oxbile added to MRS broth. Studies in a model simulating the transit through the GIT indicated that encapsulated cells were protected from the acidic conditions in the stomach but were less resistant when in conditions simulating the duodenum, jejunum, ileum and first section of the colon. To our knowledge, this is the first report on a bacteriocinogenic LAB isolated from papaya that presents application in food biopreservation and may be beneficial to the consumer health due to its potential probiotic characteristics.
Resumo:
Achira (Canna indica L.) is a plant native to the Andes in South America, a starchy source, and its cultivation has expanded to different tropical countries, like Brazil. In order to evaluate the potential of this species, starch and flours with different particle size were obtained from Brazilian achira rhizomes. Proximal analyses, size distribution, SEM, swelling power, solubility, DSC, XRD analysis, and FTIR were performed for characterization of these materials. Flours showed high dietary fiber content (16.532.2% db) and high concentration of starch in the case of the smaller particle size fraction. Significant differences in protein and starch content, swelling power, solubility, and thermal properties were observed between the Brazilian and the Colombian starch. All the studied materials displayed the B-type XRD pattern with relative crystallinity of 20.1% for the flour and between 27.0 and 28.0% for the starches. Results showed that the starch and flour produced from achira rhizomes have great technological potential for use as functional ingredient in the food industry.
Resumo:
Aspergillus phoenicis is an interesting heat tolerant fungus that can synthesize enzymes with several applications in the food industry due to its great hydrolytic potential. In this work, the fungus produced high enzymatic levels when cultivated on inexpensive culture media consisting of flakes from different origins such as cassava flour, wheat fibre, crushed soybean, agro-industrial wastes, starch, glucose or maltose. Several enzymatic systems were produced from these carbon sources, but amylase was the most evident, followed by pectinase and xylanase. Traces of CMCases, avicelase, lipase, β-xylosidase, β-glucosidase and α-glucosidase activities were also detected. Amylases were produced on rye flakes, starch, oat flakes, corn flakes, cassava flour and wheat fibre. Significant amylolytic levels were produced in the culture medium with glucose or when this sugar was exhausted, suggesting an enzyme in the constitutive form. Cassava flour, rye, oats, barley and corn flakes were also used as substrates in the hydrolytic reactions, aiming to verify the liberation potential of reducing sugars. Corn flakes induced greater liberation of reducing sugars as compared to the others. Thin layer chromatography of the reaction end products showed that the hydrolysis of cassava flour liberated maltooligosaccharides, but cassava flour and corn, rye, oats and barley flakes were hydrolyzed to glucose. These results suggested the presence of glucoamylase and α-amylase as part of the enzymatic pool of A. phoencis.
Resumo:
The olive oil extraction industry is responsible for the production of high quantities of vegetation waters, represented by the constitutive water of the olive fruit and by the water used during the process. This by-product represent an environmental problem in the olive’s cultivation areas because of its high content of organic matter, with high value of BOD5 and COD. For that reason the disposal of the vegetation water is very difficult and needs a previous depollution. The organic matter of vegetation water mainly consists of polysaccharides, sugars, proteins, organic acids, oil and polyphenols. This last compounds are the principal responsible for the pollution problems, due to their antimicrobial activity, but, at the same time they are well known for their antioxidant properties. The most concentrate phenolic compounds in waters and also in virgin olive oils are secoiridoids like oleuropein, demethyloleuropein and ligstroside derivatives (the dialdehydic form of elenolic acid linked to 3,4-DHPEA, or p-HPEA (3,4-DHPEA-EDA or p-HPEA-EDA) and an isomer of the oleuropein aglycon (3,4-DHPEA-EA). The management of the olive oil vegetation water has been extensively investigated and several different valorisation methods have been proposed, such as the direct use as fertilizer or the transformation by physico-chemical or biological treatments. During the last years researchers focused their interest on the recovery of the phenolic fraction from this waste looking for its exploitation as a natural antioxidant source. At the present only few contributes have been aimed to the utilization for a large scale phenols recovery and further investigations are required for the evaluation of feasibility and costs of the proposed processes. The present PhD thesis reports a preliminary description of a new industrial scale process for the recovery of the phenolic fraction from olive oil vegetation water treated with enzymes, by direct membrane filtration (microfiltration/ultrafiltration with a cut-off of 250 KDa, ultrafiltration with a cut-off of 7 KDa/10 KDa and nanofiltration/reverse osmosis), partial purification by the use of a purification system based on SPE analysis and by a liquid-liquid extraction system (LLE) with contemporary reduction of the pollution related problems. The phenolic fractions of all the samples obtained were qualitatively and quantitatively by HPLC analysis. The work efficiency in terms of flows and in terms of phenolic recovery gave good results. The final phenolic recovery is about 60% respect the initial content in the vegetation waters. The final concentrate has shown a high content of phenols that allow to hypothesize a possible use as zootechnic nutritional supplements. The purification of the final concentrate have garanteed an high purity level of the phenolic extract especially in SPE analysis by the use of XAD-16 (73% of the total phenolic content of the concentrate). This purity level could permit a future food industry employment such as food additive, or, thanks to the strong antioxidant activity, it would be also use in pharmaceutical or cosmetic industry. The vegetation water depollutant activity has brought good results, as a matter of fact the final reverse osmosis permeate has a low pollutant rate in terms of COD and BOD5 values (2% of the initial vegetation water), that could determinate a recycling use in the virgin olive oil mechanical extraction system producing a water saving and reducing thus the oil industry disposal costs .
Resumo:
Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between the external solution and the internal liquid phase of the cells. Vacuum Impregnation of porous products immersed in a liquid phase consist of reduction of pressure in a solid-liquid system (vacuum step) followed by the restoration of atmospheric pressure (atmospheric step). During the vacuum step the internal gas in the product pores is expanded and partially flows out while during the atmospheric step, there is a compression of residual gas and the external liquid flows into the pores (Fito, 1994). This process is also a very useful unit operation in food engineering as it allows to introduce specific solutes in the tissue which can play different functions (antioxidants, pH regulators, preservatives, cryoprotectants etc.). The present study attempts to enhance our understanding and knowledge of fruit as living organism, interacting dynamically with the environment, and to explore metabolic, structural, physico-chemical changes during fruit processing. The use of innovative approaches and/or technologies such as SAFES (Systematic Approach to Food Engineering System), LF-NMR (Low Frequency Nuclear Magnetic Resonance), GASMAS (Gas in Scattering Media Absorption Spectroscopy) are very promising to deeply study these phenomena. SAFES methodology was applied in order to study irreversibility of the structural changes of kiwifruit during short time of osmotic treatment. The results showed that the deformed tissue can recover its initial state 300 min after osmotic dehydration at 25 °C. The LF-NMR resulted very useful in water status and compartmentalization study, permitting to separate observation of three different water population presented in vacuole, cytoplasm plus extracellular space and cell wall. GASMAS techniques was able to study the pressure equilibration after Vacuum Impregnation showing that after restoration of atmospheric pressure in the solid-liquid system, there was a reminding internal low pressure in the apple tissue that slowly increases until reaching the atmospheric pressure, in a time scale that depends on the vacuum applied during the vacuum step. The physiological response of apple tissue on Vacuum Impregnation process was studied indicating the possibility of vesicular transport within the cells. Finally, the possibility to extend the freezing tolerance of strawberry fruits impregnated with cryoprotectants was proven.
Resumo:
In the present work qualitative aspects of products that fall outside the classic Italian of food production view will be investigated, except for the apricot, a fruit, however, less studied by the methods considered here. The development of computer systems and the advanced software systems dedicated for statistical processing of data, has permitted the application of advanced technologies including the analysis of niche products. The near-infrared spectroscopic analysis was applied to the chemical industry for over twenty years and, subsequently, was applied in food industry with great success for non-destructive in line and off-line analysis. The work that will be presented below range from the use of spectroscopy for the determination of some rheological indices of ice cream applications to the characterization of the main quality indices of apricots, fresh dates, determination of the production areas of pistachio. Next to the spectroscopy will be illustrated different methods of multivariate analysis for spectra interpretation or for the construction of qualitative models of estimation. The thesis is divided into four separate studies that consider the same number of products. Each one of it is introduced by its own premise and ended with its own bibliography. This studies are preceded by a general discussion on the state of art and the basics of NIR spectroscopy.
Resumo:
In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.
Resumo:
Nell’attuale contesto, caratterizzato da un’elevata attenzione alla qualità e alla sicurezza degli alimenti e alle soluzioni tese a garantirli, l’implementazione di sistemi microelettronici per il controllo del prodotto attraverso supporti miniaturizzati e a basso costo può risultare un’opportunità strategica. Oggetto della ricerca di dottorato sono stati lo studio dell’utilizzo di sensori e strumentazione innovativi per la misurazione ed il controllo di parametri ambientali di conservazione di prodotti alimentari e per la loro identificazione mediante la tecnologia della radiofrequenza. Allo scopo è stato studiato il contesto in cui operano gli attori principali della filiera agroalimentare ed è stata sviluppata un’idea di etichetta progettata per essere in grado di emettere attivamente segnale di allarme in caso di necessità (etichetta RFID intelligente semi-passiva). Il prototipo di chip, realizzato in via sperimentale, è stato validato positivamente, sia come strumento di misura, sia in termini di prestazione nel caso studio del monitoraggio della conservazione di un prodotto alimentare in condizioni controllate di temperatura e radiazione luminosa. Le significative evidenze analitiche di reazioni di degradazione dello stato qualitativo del prodotto, quali analisi di pH e colore, raccolte durante il periodo di osservazione di 64 giorni, hanno trovato riscontro con le misure rilevate dal chip prototipo. I risultati invitano ad individuare un partner industriale, con il quale sperimentare l’applicazione della tecnologia proposta.
Resumo:
Le profonde trasformazioni che hanno interessato l’industria alimentare, unitamente alle accresciute capacità delle scienze mediche ed epidemiologiche di individuare nessi causali tra il consumo di determinate sostanze e l’insorgere di patologie, hanno imposto al legislatore di intervenire nella materia della c.d. sicurezza alimentare mettendo in atto sistemi articolati e complessi tesi a tutelare la salute dei consociati. Quest’ultimo obiettivo viene perseguito, da un lato, mediante disposizioni di natura pubblicistica e di carattere preventivo e, dall’altro lato, dallo strumento della responsabilità civile. Le due prospettive di tutela della salute delle persone costituiscono parti distinte ma al tempo stesso fortemente integrate in una logica unitaria. Questa prospettiva emerge chiaramente nel sistema statunitense: in quel ordinamento la disciplina pubblicistica della sicurezza degli alimenti – definita dalla Food and Drug Administration – costituisce un punto di riferimento imprescindibile anche quando si tratta di stabilire se un prodotto alimentare è difettoso e se, di conseguenza, il produttore è chiamato a risarcire i danni che scaturiscono dal suo utilizzo. L’efficace sinergia che si instaura tra la dimensione pubblicistica del c.d. Public Enforcement e quella risarcitoria (Private Enforcement) viene ulteriormente valorizzata dalla presenza di efficaci strumenti di tutela collettiva tra i quali la class action assume una importanza fondamentale. Proprio muovendo dall’analisi del sistema statunitense, l’indagine si appunta in un primo momento sull’individuazione delle lacune e delle criticità che caratterizzano il sistema nazionale e, più in generale quello comunitario. In un secondo momento l’attenzione si focalizza sull’individuazione di soluzioni interpretative e de iure condendo che, anche ispirandosi agli strumenti di tutela propri del diritto statunitense, contribuiscano a rendere maggiormente efficace la sinergia tra regole preventive sulla sicurezza alimentare e regole risarcitorie in materia di responsabilità del produttore.
Resumo:
Parasiten der Apicomplexa umfassen sowohl humanpathogene, als auch tierpathogene Protozoen. Beispiele für wichtige Vertreter human- und tierpathogener Parasiten sind Plasmodium falciparum und Eimeria tenella. E. tenella verursacht die Kokzidiose des Hühnchens, eine Darmerkrankung die weltweit für Verluste in einer geschätzten Höhe von bis zu 3 Milliarden US$ verantwortlich zeichnet. Eine prophylaktische Vakzinierung gegen diese Krankheit ist ökonomisch meist ineffizient, und eine Behandlung mit Kokzidiostatika wird durch häufige Resistenzbildung gegen bekannte Wirkstoffe erschwert. Diese Situation erfordert die Entwicklung neuer kostengünstiger Alternativen. Geeignete Zielproteine für die Entwicklung neuartiger Arzneistoffe zur Behandlung der Kokzidiose sind die Zyklin-abhängigen Kinasen (CDKs), zu denen auch die CDK-related Kinase 2 (EtCRK2) aus E. tenella gehört. Diese Proteine sind maßgeblich an der Regulation des Zellzyklus beteiligt. Durch chemische Validierung mit dem CDK Inhibitor Flavopiridol konnte nachgewiesen werden, dass ein Funktionsverlust von CDKs in E. tenella die Vermehrung des Parasiten in Zellkultur inhibiert. E. tenella CDKs sind daher als Zielproteine für die Entwicklung einer Chemotherapie der Kokzidiose geeignet. Mittels bioinformatischer Tiefenanalysen sollten CDK Proteine im Parasiten E. tenella identifiziert werden. Das Genom von E. tenella liegt in Rohfassung vor [ftp://ftp.sanger.ac.uk]. Jedoch waren zum Zeitpunkt dieser Arbeiten viele Sequenzen des Genoms noch nicht annotiert. Homologe CDK Proteine von E. tenella konnten durch den Vergleich von Sequenzinformationen mit anderen Organismen der Apicomplexa identifiziert und analysiert werden. Durch diese Analysen konnten neben der bereits bekannten EtCRK2, drei weitere, bislang nicht annotierte CDKs in E. tenella identifiziert werden (EtCRK1, EtCRK3 sowie EtMRK). Darüber hinaus wurde eine Analyse der entsprechenden Zykline – der Aktivatoren der CDKs – bezüglich Funktion und Struktur, sowie eine Datenbanksuche nach bisher nicht beschriebenen Zyklinen in E. tenella durchgeführt. Diese Suchen ergaben vier neue potentielle Zykline für E. tenella, wovon EtCYC3a als Aktivator der EtCRK2 von María L. Suárez Fernández (Intervet Innovation GmbH, Schwabenheim) bestätigt werden konnte. Sequenzvergleiche lassen vermuten, dass auch EtCYC1 und EtCYC3b in der Lage sind, EtCRK2 zu aktivieren. Außerdem ist anzunehmen, dass EtCYC4 als Aktivator der EtCRK1 fungiert. Ein weiterer Schwerpunkt der vorliegenden Arbeit war die Suche und Optimierung nach neuen Inhibitoren von CDKs aus E. tenella. In vorangegangenen Arbeiten konnten bereits Inhibitoren der EtCRK2 gefunden werden [BEYER, 2007]. Mittels Substruktur- und Ähnlichkeitssuchen konnten im Rahmen dieser Arbeit weitere Inhibitoren der EtCRK2 identifiziert werden. Vier dieser Strukturklassen erfüllen die Kriterien einer Leitstruktur. Eine dieser Leitstrukturen gehört zur Strukturklasse der Benzimidazol-Carbonitrile und ist bislang nicht als Inhibitor anderer Kinasen beschrieben. Diese neu identifizierte Leitstruktur konnte in silico weiter optimiert werden. Im Rahmen dieser Arbeit wurden Bindungsenergien von Vertretern dieser Strukturklasse berechnet, um einen wahrscheinlichen Bindemodus vorherzusagen. Für die weiterführende in silico Optimierung wurde eine virtuelle kombinatorische Substanzbibliothek dieser Klasse erstellt. Die Auswahl geeigneter Verbindungen für eine chemische Synthese erfolgte durch molekulares Docking unter Nutzung von Homologiemodellen der EtCRK2. Darüber hinaus wurde ein in silico Screening nach potentiellen Inhibitoren der PfMRK und EtMRK durchgeführt. Dabei konnten weitere interessante virtuelle Hit-Strukturen aus einer Substanzdatenbank kommerziell erhältlicher Verbindungen gefunden werden. Durch dieses virtuelle Screening konnten jeweils sieben Verbindungen als virtuelle Hits der PfMRK sowie der EtMRK identifiziert werden. Die Häufung von Strukturklassen mit bekannter CDK Aktivität deutet darauf hin, dass während des virtuellen Screenings eine Anreicherung von CDK Inhibitoren stattgefunden hat. Diese Ergebnisse lassen auf eine Weiterentwicklung neuer Wirkstoffe gegen Kokzidiose und Malaria hoffen.