921 resultados para Flexible Labour
Resumo:
Economic analysis of technology treats it as given exogenously, while determined endogenously. This paper examines the conceptual conflict. The paper outlines an alternative conceptual framework. This uses a 'General Vertical Division of Labour' into conceptual and executive parts to facilitate a coherent political economic explanation of technological change. The paper suggests that we may acquire rather than impose an understanding of technological change. It also suggests that we may re-define and reassess the efficiency of technological change, through the values inculcated into it.
Resumo:
This study investigates whether men and women in caring occupations experience more negative job-related feelings at the end of the day compared to the rest of the working population. The data are from Wave Nine of the British Household Panel Survey (1999) where respondents were asked whether, at the end of the working day, they tended to keep worrying or have trouble unwinding, and the extent to which work left them feeling exhausted or “used up.” Their responses to these questions were used to develop ordinal dependent variables. Control variables in the models include: number of children, age, hours worked per week, managerial responsibilities and job satisfaction, all of which have been shown in previous research to be significantly related to “job burnout.” The results are that those in caring occupations are more likely to feel worried, tense, drained and exhausted at the end of the working day. Women in particular appear to pay a high emotional cost for working in caring occupations. Men do not emerge unscathed, but report significantly lower levels of worry and exhaustion at the end of the day than do women.
Resumo:
The diel vertical migration (DVM) of the whole plankton community was investigated in the central and coastal Irish Sea. Generally, more than 60% of the plankton did not perform significant DVM. A correlation analysis of the weighted mean depths of different organisms and their potential predators suggested relationships between two groups, Oithona spp., copepod nauplii and fish larvae, and between Pseudocalanus elongatus, Calanus spp. and chaetognaths. The organisms showing significant DVM were chaetognaths (Sagitta spp.), Calanus spp. and P. elongatus. Calanus spp. showed clear ontogenic variations in DVM, and along with P. elongatus demonstrated great flexibility both in the amplitude and direction of migration. P. elongatus did not migrate in the coastal area and Calanus spp. showed a clear reverse migration. The direction of migration appeared to be related to the vertical position of the chaetognaths in the water column during the day.
Flexible C : N ratio enhances metabolism of large phytoplankton when resource supply is intermittent
Resumo:
Phytoplankton cell size influences particle sinking rate, food web interactions and biogeographical distributions. We present a model in which the uptake, storage and assimilation of nitrogen and carbon are explicitly resolved in different-sized phytoplankton cells. In the model, metabolism and cellular C :N ratio are influenced by the accumulation of carbon polymers such as carbohydrate and lipid, which is greatest when cells are nutrient starved, or exposed to high light. Allometric relations and empirical data sets are used to constrain the range of possible C : N, and indicate that larger cells can accumulate significantly more carbon storage compounds than smaller cells. When forced with extended periods of darkness combined with brief exposure to saturating irradiance, the model predicts organisms large enough to accumulate significant carbon reserves may on average synthesize protein and other functional apparatus up to five times faster than smaller organisms. The advantage of storage in terms of average daily protein synthesis rate is greatest when modeled organisms were previously nutrient starved, and carbon storage reservoirs saturated. Small organisms may therefore be at a disadvantage in terms of average daily growth rate in environments that involve prolonged periods of darkness and intermittent nutrient limitation. We suggest this mechanism is a significant constraint on phytoplankton C :N variability and cell size distribution in different oceanic regimes.