872 resultados para Fire extinction
Resumo:
Fire is an important component of the Earth System that is tightly coupled with climate, vegetation, biogeochemical cycles, and human activities. Observations of how fire regimes change on seasonal to millennial timescales are providing an improved understanding of the hierarchy of controls on fire regimes. Climate is the principal control on fire regimes, although human activities have had an increasing influence on the distribution and incidence of fire in recent centuries. Understanding of the controls and variability of fire also underpins the development of models, both conceptual and numerical, that allow us to predict how future climate and land-use changes might influence fire regimes. Although fires in fire-adapted ecosystems can be important for biodiversity and ecosystem function, positive effects are being increasingly outweighed by losses of ecosystem services. As humans encroach further into the natural habitat of fire, social and economic costs are also escalating. The prospect of near-term rapid and large climate changes, and the escalating costs of large wildfires, necessitates a radical re-thinking and the development of approaches to fire management that promote the more harmonious co-existence of fire and people.
Resumo:
Extinction following positively reinforced operant conditioning reduces response frequency, at least in part through the aversive or frustrative effects of non-reinforcement. According to J.A. Gray's theory, non-reinforcement activates the behavioural inhibition system which in turn causes anxiety. As predicted, anxiolytic drugs including benzodiazepines affect the operant extinction process. Recent studies have shown that reducing GABA-mediated neurotransmission retards extinction of aversive conditioning. We have shown in a series of studies that anxiolytic compounds that potentiate GABA facilitate extinction of positively reinforced fixed-ratio operant behaviour in C57B1/6 male mice. This effect does not occur in the early stages of extinction, nor is it dependent on cumulative effects of the compound administered. Potentiation of GABA at later stages has the effect of increasing sensitivity to the extinction contingency and facilitates the inhibition of the behaviour that is no longer required. The GABAergic hypnotic, zolpidem, has the same selective effects on operant extinction in this procedure. The effects of zolpidem are not due to sedative action. There is evidence across our series of experiments that different GABA-A subtype receptors are involved in extinction facilitation and anxiolysis. Consequently, this procedure may not be an appropriate model for anxiolytic drug action, but it may be a useful technique for analysing the neural bases of extinction and designing therapeutic interventions in humans where failure to extinguish inappropriate behaviours can lead to pathological conditions such as post-traumatic stress disorder.
Resumo:
Relatively little is known about the role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in extinction of appetitively motivated tasks. The benzodiazepine (BZ) chlordiazepoxide (CDP) was administered during extinction and re-acquisition of lever pressing by mice following food reinforced discrete-trial fixed-ratio 5 (FR-5) training. Typical FR behaviour was established during baseline training and persisted for several extinction sessions. There were 15 extinction sessions in all, followed by six re-acquisition sessions where food reinforcement was re-introduced. In a 2x2x2 between-group design, CDP (15 mg/kg) or vehicle injections were given prior to either the last two food reinforcement sessions and the first 10 extinction sessions, or the final five extinction sessions, or the six re-acquisition sessions. Initially CDP had no effect on the rate of extinction, but after several extinction sessions it significantly facilitated it. Surprisingly, if CDP was administered only after several sessions of extinction, it immediately produced facilitation. Thus the delayed effects of CDP are not due to drug accumulation. These data suggest that some neural change must occur before CDP can affect extinction processes. In re-acquisition sessions, CDP facilitated the reinstatement of food-reinforced lever pressing. Implications for neural and behavioural accounts of operant extinction are discussed.
Resumo:
Several recent studies have shown that reducing gamma-aminobutyric acid (GABA)-mediated neurotransmission retards extinction of aversive conditioning. However, relatively little is known about the effect of GABA on extinction of appetitively motivated tasks. We examined the effect of chlordiazepoxide (CDP), a classical benzodiazepine (BZ) and two novel subtype-selective BZs when administered to male C57Bl/6 mice during extinction following training on a discrete-trial fixed-ratio 5 (FR5) food reinforced lever-press procedure. Initially CDP had no effect, but after several extinction sessions CDP significantly facilitated extinction, i.e. slowed responding, compared with vehicle-treated mice. This effect was not due to drug accumulation because mice switched from vehicle treatment to CDP late in extinction showed facilitation immediately. Likewise, this effect could not be attributed to sedation because the dose of CDP used (15 mg/kg i.p.) did not suppress locomotor activity. The two novel subtype-selective BZ partial agonists, L-838417 and TP13, selectively facilitated extinction in similar fashion to CDP. The non-GABAergic anxiolytic buspirone was also tested and found to have similar effects when administered at a non-sedating dose. These studies demonstrate that GABA-mediated processes are important during extinction of an appetitively motivated task, but only after the animals have experienced several extinction sessions.
Resumo:
A 19 cal ka BP pollen and charcoal record from Lake Shaman (44°S; 71°W, Chile) was analyzed to establish vegetation, fire and climate dynamics of the forest-steppe ecotone in Central Chilean Patagonia. Lake Shaman record indicates that the upper Río Cisnes valley was free of ice at around 19 cal ka BP. From this date and until 14.8 cal ka BP, a grass steppe with high proportions of shrubs associated to colder and drier conditions than present developed in this area. A continuous increase of Nothofagus accompanied by a decline in the steppe shrubs and sudden dominance of paludal over aquatic plants from 11 cal ka BP was associated to effective moisture increase but still under modern values. The replacement of the cold-dry grass-shrub steppe by a similar-than-present forest-steppe ecotone suggests an increase in temperature indicating the onset of the Holocene. At the same time, moderate fire activity suggested by the charcoal record could be related to major fuel availability as consequence of Nothofagus forest expansion. Between 8 and 3 cal ka BP, the record indicates the easternmost position of the forest-steppe ecotone suggesting the highest effective moisture with the establishment of seasonality between 5 and 3 cal ka BP. From 3 cal ka BP, the record indicates a retraction of the forest-steppe ecotone accompanied by a high pollen record variability and an increased fire activity. These late changes suggest decreased effective moisture associated with a high climatic variability. At regional and extra-regional scale, climatic changes at Lake Shaman's record are mostly associated to changes (latitudinal shifts and/or strengthening/weakening) of past Southern Westerlies that were previously recorded along Patagonia from the Lateglacial to the mid-Holocene. During the Late Holocene, a regional pattern characterized by high record variability emerges throughout Central Chilean Patagonia. This variability would be related to (1) low magnitude Southern Westerlies changes probably associated to ENSO and/or SAM or (2) the complex relationships between vegetation, fire and human occupations during the last 3 cal ka.
Resumo:
Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated on a continental and global scale. The main goal of this study, therefore, is to quantify the changes in instantaneous shortwave albedo produced by biomass burning activities and their associated radiative forcing. The study relies on the MODerate-resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned-area product to create an annual composite of areas affected by fire and the MCD43C2 bidirectional reflectance distribution function (BRDF) albedo snow-free product to compute a bihemispherical reflectance time series. The approximate day of burning is used to calculate the instantaneous change in shortwave albedo. Using the corresponding National Centers for Environmental Prediction (NCEP) monthly mean downward solar radiation flux at the surface, the global radiative forcing associated with fire was computed. The analysis reveals a mean decrease in shortwave albedo of −0.014 (1σ = 0.017), causing a mean positive radiative forcing of 3.99 Wm−2 (1σ = 4.89) over the 2002–20012 time period in areas affected by fire. The greatest drop in mean shortwave albedo change occurs in 2002, which corresponds to the highest total area burned (378 Mha) observed in the same year and produces the highest mean radiative forcing (4.5 Wm−2). Africa is the main contributor in terms of burned area, but forests globally give the highest radiative forcing per unit area and thus give detectable changes in shortwave albedo. The global mean radiative forcing for the whole period studied (~0.0275 Wm−2) shows that the contribution of fires to the Earth system is not insignificant.
Resumo:
Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico
Resumo:
Global controls on month-by-month fractional burnt area (2000–2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models – most notably, the widely assumed dependence of fire frequency on ignition rates – are evidently incorrect.
Resumo:
The Chiado’s fire that affected the city centre of Lisbon (Portugal) occurred on 25th August 1988 and had a significant human and environmental impact. This fire was considered the most significant hazard to have occurred in Lisbon city centre after the major earthquake of 1755. A clear signature of this fire is found in the atmospheric electric field data recorded at Portela meteorological station about 8 km NE from the site where the fire started at Chiado. Measurements were made using a Benndorf electrograph with a probe at 1 m height. The atmospheric electric field reached 510 V/m when the wind direction was coming from SW to NE, favourable to the transport of the smoke plume from Chiado to Portela. Such observations agree with predictions using Hysplit air mass trajectory modelling and have been used to estimate the smoke concentration to be ~0.4 mg/m3. It is demonstrated that atmospheric electric field measurements were therefore extremely sensitive to Chiado’s fire. This result is of particular current interest in using networks of atmospheric electric field sensors to complement existing optical and meteorological observations for fire monitoring.
Resumo:
Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load
Resumo:
Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are projected to increase by ∼ 3 ◦C coupled with a precipitation decrease of ∼ 20 %. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed with phytoliths, stable isotopes, and charcoal. A nonanalogue, cold-adapted vegetation community dominated the Lateglacial–early Holocene period (14 500–9000 cal yr BP, which included trees and C3 Pooideae and C4 Panicoideae grasses. The Lateglacial vegetation was fire-sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly firedependent during the middle Holocene with the expansion of C4 fire-adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first-order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second-order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels and (2) decreased frequency and duration of surazos (cold wind incursions from Patagonia) leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Lateglacial period.
Resumo:
Background: Coordination of activity between the amygdala and ventromedial prefrontal cortex (vmPFC) is important for fear-extinction learning. Aberrant recruitment of this circuitry is associated with anxiety disorders. Here, we sought to determine if individual differences in future threat uncertainty sensitivity, a potential risk factor for anxiety disorders, underly compromised recruitment of fear extinction circuitry. Twenty-two healthy subjects completed a cued fear conditioning task with acquisition and extinction phases. During the task, pupil dilation, skin conductance response, and functional magnetic resonance imaging were acquired. We assessed the temporality of fear extinction learning by splitting the extinction phase into early and late extinction. Threat uncertainty sensitivity was measured using self-reported intolerance of uncertainty (IU). Results: During early extinction learning, we found low IU scores to be associated with larger skin conductance responses and right amygdala activity to learned threat vs. safety cues, whereas high IU scores were associated with no skin conductance discrimination and greater activity within the right amygdala to previously learned safety cues. In late extinction learning, low IU scores were associated with successful inhibition of previously learned threat, reflected in comparable skin conductance response and right amgydala activity to learned threat vs. safety cues, whilst high IU scores were associated with continued fear expression to learned threat, indexed by larger skin conductance and amygdala activity to threat vs. safety cues. In addition, high IU scores were associated with greater vmPFC activity to threat vs. safety cues in late extinction. Similar patterns of IU and extinction learning were found for pupil dilation. The results were specific for IU and did not generalize to self-reported trait anxiety. Conclusions: Overall, the neural and psychophysiological patterns observed here suggest high IU individuals to disproportionately generalize threat during times of uncertainty, which subsequently compromises fear extinction learning. More broadly, these findings highlight the potential of intolerance of uncertainty-based mechanisms to help understand pathological fear in anxiety disorders and inform potential treatment targets.
Resumo:
Understanding what makes some species more vulnerable to extinction than others is an important challenge for conservation. Many comparative analyses have addressed this issue exploring how intrinsic and extrinsic traits associate with general estimates of vulnerability. However, these general estimates do not consider the actual threats that drive species to extinction and hence, are more difficult to translate into effective management. We provide an updated description of the types and spatial distribution of threats that affect mammals globally using data from the IUCN for 5941 species of mammals. Using these data we explore the links between intrinsic species traits and specific threats in order to identify key intrinsic features associated with particular drivers of extinction. We find that families formed by small-size habitat specialists are more likely to be threatened by habitat-modifying processes; whereas, families formed by larger mammals with small litter sizes are more likely to be threatened by processes that directly affect survival. These results highlight the importance of considering the actual threatening process in comparative studies. We also discuss the need to standardize and rank threat importance in global assessments such as the IUCN Red List to improve our ability to understand what makes some species more vulnerable to extinction than others.
Resumo:
Anthropogenic degradation of the world's ecosystems is leading to a widespread and accelerating loss of biodiversity. However, not all species respond equally to existing threats, raising the question: what makes a species more vulnerable to extinction? We propose that higher intraspecific variability may reduce the risk of extinction, as different individuals and populations within a species may respond differently to occurring threats. Supporting this prediction, our results show that mammalian species with more variable adult body masses, litter sizes, sexual maturity ages and population densities are less vulnerable to extinction. Our findings reveal the role of local variation among populations, particularly of large mammals, as a buffering mechanism against extinction, and emphasise the importance of considering trait variation in comparative analyses and conservation management.