996 resultados para Fire Monitoring
Resumo:
Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.
Resumo:
Of the five known incursions of the highly invasive Red Imported Fire Ant in Australia, two are regarded to have been eradicated. As treatment efforts continue, and the programme evolves and new tools become available, eradication is still considered to be feasible for the remaining Red Imported Fire Ant populations with long-term commitment and support.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
Digital image
Resumo:
Symposium co-ordinated by The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) Purpose Global monitoring of the price and affordability of foods, meals and diets is urgently needed. There are major methodological challenges in developing robust, cost-effective, standardized, and policy relevant tools, pertinent to nutrition, obesity, and diet-related non-communicable diseases and their inequalities. There is increasing pressure to take into account environmental sustainability. Changes in price differentials and affordability need to be comparable between and within countries and over time. Robust tools could provide baseline data for monitoring and evaluating structural, economic and social policies at the country/regional and household levels. INFORMAS offers one framework for consideration.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
This thesis increased the researchers understanding of the relationship between operations and maintenance in underground longwall coal mines, using data from a Queensland underground coal mine. The thesis explores various relationships between recorded variables. Issues with human recorded data was uncovered, and results emphasised the significance of variables associated with conveyor operation to explain production.
Fire histories and tree ages in unmanaged boreal forests in Eastern Fennoscandia and Onega peninsula
Resumo:
The fire resistance characteristic of LSF wall systems mainly depends on the protective linings in use, commonly gypsum plasterboards. However, unclassified boards with varying composition and more notably with ambiguous thermal properties are increasingly becoming available in the market. Therefore a study was undertaken with an aim to set minimum standards for fire protective boards used in LSF wall applications. This paper presents the details of this study based on material characterisation and finite element thermal modelling of the most commonly used fire protective board, gypsum plasterboards, to address these critical issues related to fire safety design. In the material characterisation phase of this study, thermal properties of three different gypsum plasterboards manufactured in Australia were measured, analysed and compared. Subsequently, it proposes a thermal property based “k-factor” capable of giving an overall measure of the fire performance of boards, so that it can be used in appropriately classifying fire protective boards. As it is not known how this factor relates to the overall fire performance of LSF wall systems, numerical models were also developed and used to simulate the performance of LSF walls exposed to the standard fire. Finally, a correlation between time-temperature profiles from numerical analyses and calculated k-factors was established.
Resumo:
Farmland bird species have been declining in Europe. Many declines have coincided with general intensification of farming practices. In Finland, replacement of mixed farming, including rotational pastures, with specialized cultivation has been one of the most drastic changes from the 1960s to the 1990s. This kind of habitat deterioration limits the persistence of populations, as has been previously indicated from local populations. Integrated population monitoring, which gathers species-specific information of population size and demography, can be used to assess the response of a population to environment changes also at a large spatial scale. I targeted my analysis at the Finnish starling (Sturnus vulgaris). Starlings are common breeders in farmland habitats, but severe declines of local populations have been reported from Finland in the 1970s and 1980s and later from other parts of Europe. Habitat deterioration (replacement of pasture and grassland habitats with specialized cultivation areas) limits reproductive success of the species. I analysed regional population data in order to exemplify the importance of agricultural change to bird population dynamics. I used nestling ringing and nest-card data from 1951 to 2005 in order to quantify population trends and per capita reproductive success within several geographical regions (south/north and west/east aspects). I used matrix modelling, acknowledging age-specific survival and fecundity parameters and density-dependence, to model population dynamics. Finnish starlings declined by 80% from the end of the 1960s up to the end of the 1980s. The observed patterns and the model indicated that the population decline was due to the decline of the carrying capacity of farmland habitats. The decline was most severe in north Finland where populations largely become extinct. However, habitat deterioration was most severe in the southern breeding areas. The deteriorations in habitat quality decreased reproduction, which finally caused the decline. I suggest that poorly-productive northern populations have been partly maintained by immigration from the highly-productive southern populations. As the southern populations declined, ceasing emigration caused the population extinction in north. This phenomenon was explained with source sink population dynamics, which I structured and verified on the basis of a spatially explicit simulation model. I found that southern Finnish starling population exhibits ten-year cyclic regularity, a phenomenon that can be explained with delayed density-dependence in reproduction.