931 resultados para Finite Elements, Masonry, Reinforced Masonry, Constitutive Modelling
Resumo:
Ligaments undergo finite strain displaying hyperelastic behaviour as the initially tangled fibrils present straighten out, combined with viscoelastic behaviour (strain rate sensitivity). In the present study the anterior cruciate ligament of the human knee joint is modelled in three dimensions to gain an understanding of the stress distribution over the ligament due to motion imposed on the ends, determined from experimental studies. A three dimensional, finite strain material model of ligaments has recently been proposed by Pioletti in Ref. [2]. It is attractive as it separates out elastic stress from that due to the present strain rate and that due to the past history of deformation. However, it treats the ligament as isotropic and incompressible. While the second assumption is reasonable, the first is clearly untrue. In the present study an alternative model of the elastic behaviour due to Bonet and Burton (Ref. [4]) is generalized. Bonet and Burton consider finite strain with constant modulii for the fibres and for the matrix of a transversely isotropic composite. In the present work, the fibre modulus is first made to increase exponentially from zero with an invariant that provides a measure of the stretch in the fibre direction. At 12% strain in the fibre direction, a new reference state is then adopted, after which the material modulus is made constant, as in Bonet and Burton's model. The strain rate dependence can be added, either using Pioletti's isotropic approximation, or by making the effect depend on the strain rate in the fibre direction only. A solid model of a ligament is constructed, based on experimentally measured sections, and the deformation predicted using explicit integration in time. This approach simplifies the coding of the material model, but has a limitation due to the detrimental effect on stability of integration of the substantial damping implied by the nonlinear dependence of stress on strain rate. At present, an artificially high density is being used to provide stability, while the dynamics are being removed from the solution using artificial viscosity. The result is a quasi-static solution incorporating the effect of strain rate. Alternate approaches to material modelling and integration are discussed, that may result in a better model.
Resumo:
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending, the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length. Based on Rayleigh's quotient, an iterative strategy is developed to find the approximated torsional stiffness coefficients, which allows the reconciliation between the theoretical model results and the experimental ones, obtained through impact tests. The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh's quotient but also on the mode shapes, considering the shape functions defined in branches. Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
n the last decades the biocomposites have been widely used in the construction, automobile and aerospace industries. Not only the interface transition zone (ITZ) but also the heterogeneity of natural fibres affects the mechanical behaviour of these composites. This work focuses on the numerical and experimental analyses of a polymeric composite fabricated with epoxy resin and unidirectional sisal and banana fibres. A three-dimensional model was set to analyze the composites using the elastic properties of the individual phases. In addition, a two-dimensional model was set taking into account the effective composite properties obtained by micromechanical models. A tensile testing was performed to validate the numerical analyses and evaluating the interface condition of the constitutive phases.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
Trabalho de Projeto para obtenção do grau de mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Although the issue of the out-of-plane response of unreinforced masonry structures under earthquake excitation is well known with consensus among the research community, this issue is simultaneously one of the more complex and most neglected areas on the seismic assessment of existing buildings. Nonetheless, its characterization should be found on the solid knowledge of the phenomenon and on the complete understanding of methodologies currently used to describe it. Based on this assumption, this article presents a general framework on the issue of the out-of-plane performance of unreinforced masonry structures, beginning with a brief introduction to the topic, followed by a compact state of art in which the principal methodologies proposed to assess the out-of-plane behavior of unreinforced masonry structures are presented. Different analytical approaches are presented, namely force and displacement-based, complemented with the presentation of existing numerical tools for the purpose presented above. Moreover, the most relevant experimental campaigns carried out in order to reproduce the phenomenon are reviewed and briefly discussed.
Resumo:
Stone masonry is one of the oldest and most worldwide used building techniques. Nevertheless, the structural response of masonry structures is complex and the effective knowledge about their mechanical behaviour is still limited. This fact is particularly notorious when dealing with the description of their out-of-plane behaviour under horizontal loadings, as is the case of the earthquake action. In this context, this paper describes an experimental program, conducted in laboratory environment, aiming at characterizing the out-of-plane behaviour of traditional unreinforced stone masonry walls. In the scope of this campaign, six full-scale sacco stone masonry specimens were fully characterised regarding their most important mechanic, geometric and dynamic features and were tested resorting to two different loading techniques under three distinct vertical pre-compression states; three of the specimens were subjected to an out-of-plane surface load by means of a system of airbags and the remaining were subjected to an out-of-plane horizontal line-load at the top. From the experiments it was possible to observe that both test setups were able to globally mobilize the out-of-plane response of the walls, which presented substantial displacement capacity, with ratios of ultimate displacement to the wall thickness ranging between 26 and 45 %, as well as good energy dissipation capacity. Finally, very interesting results were also obtained from a simple analytical model used herein to compute a set of experimental-based ratios, namely between the maximum stability displacement and the wall thickness for which a mean value of about 60 % was found.
Resumo:
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so-called local mechanisms, often associated with the out-of-plane wall behavior, whose stability is evaluated by static force-based approaches and, more recently, by some displacement-based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no-tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi-body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full-scale shaking-table tests on stone masonry buildings: a sacco-stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two-storey double-leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE).
Resumo:
Tese apresentada para obtenção do Grau de Doutor em Engenharia Civil na especialidade de Reabilitação do Património Edificado, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibilit, LNEC, Lisbon, 24-26 September 2008
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
9th International Masonry Conference 2014, 7-9 July, Universidade do Minho, Guimarães