893 resultados para Fiber Coupling Efficiency
Resumo:
In current practice, urban-rural development has been regarded as one of the key pillars in driving regenerative development that includes economic, social, and environmental balance. In association with rapid urbanization, an important contemporary issue in China is that its rural areas are increasingly lagging behind urban areas in their development and a coordinated provision of public facilities in rural areas is necessary to achieve a better balance. A model is therefore introduced for quantifying the effect of individual infrastructure projects on urban-rural balance (e-UR) by focusing on two attributes, namely, efficiency and equity. The model is demonstrated through a multi-criteria model, developed with data collected from infrastructure projects in Chongqing, with the criteria values for each project being scored by comparing data collected from the project involved with e-UR neutral “benchmark” values derived from a survey of experts in the field. The model helps evaluate the contribution of the projects to improving rural-urban balance and hence enable government decision-makers for the first time to prioritize future projects rigorously in terms of their likely contribution too.
Resumo:
This thesis studied cadmium sulfide and cadmium selenide quantum dots and their performance as light absorbers in quantum dot-sensitised solar cells. This research has made contributions to the understanding of size dependent photodegradation, passivation and particle growth mechanism of cadmium sulfide quantum dots using SILAR method and the role of ZnSe shell coatings on solar cell performance improvement.
Resumo:
This study was designed to examine differences in the coupling dynamics between upper limb motion, physiological tremor and whole body postural sway in young healthy adults. Acceleration of the hand and fingers, forearm EMG activity and postural sway data were recorded. Estimation of the degree of bilateral and limb motion-postural sway coupling was determined by cross correlation, coherence and Cross-ApEn analyses. The results of the analysis revealed that, under postural tremor conditions, there was no significant coupling between limbs, muscles or sway across all metrics of coupling. In contrast, performing a rapid alternating flexion/extension movement about the wrist joint (with one or both limbs) resulted in stronger coupling between limb motion and postural sway. These results support the view that, for physiological tremor responses, the control of postural sway is maintained independent to tremor in the upper limb. However, increasing the level of movement about a distal segment of one arm (or both) leads to increased coupling throughout the body. The basis for this increased coupling would appear to be related to the enhanced neural drive to task-specific muscles within the upper limb.
Resumo:
A multi-objective design optimization study has been conducted for upstream fuel injection through porous media applied to the first ramp of a two-dimensional scramjet intake. The optimization has been performed by coupling evolutionary algorithms assisted by surrogate modeling and computational fluid dynamics with respect to three design criteria, that is, the maximization of the absolute mixing quantity, total pressure saving, and fuel penetration. A distinct Pareto optimal front has been obtained, highlighting the counteracting behavior of the total pressure against the mixing efficiency and fuel penetration. The injector location and size have been identified as the key design parameters as a result of a sensitivity analysis, with negligible influence of the porous properties in the configurations and conditions considered in the present study. Flowfield visualization has revealed the underlying physics associated with the effects of these dominant parameters on the shock structure and intensity.
Resumo:
Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.
Resumo:
Society is increasingly calling for professionals across government, industry, business and civil society to be able to problem-solve issues related to climate change and sustainable development as part of their work. In particular there is an emerging realisation of the fundamental need to swiftly reduce the growing demand for energy across society, and to then meet the demand with low emissions options. A key ingredient to addressing such issues is equipping professionals with emerging knowledge and skills to address energy challenges in all aspects of their work. The Council of Australian Governments has recognised this need, signing the National Partnership Agreement on Energy Efficiency in July 2009, which included a commitment to assist business and industry obtain the knowledge, skills and capacity to pursue cost-effective energy efficiency opportunities.2 Engineering will play a critical part among the professions, with Engineers Australia acknowledging that, ‘The need to make changes in the way energy is used and supplied throughout the world represents the greatest challenge to engineers in moving toward sustainability.’
Resumo:
This report presents the findings of an investigation of energy efficiency resources for undergraduate engineering education, undertaken by web-based research, conversations with educators, and a university survey. The investigation draws on the results of a number of previous investigations undertaken by the research team for NFEE related to energy efficiency education and presents the following findings and recommendations, as explained in greater detail in the body of the report. The findings suggest that even though certain EE concepts and principles have been identified by lecturers as being important there is little to no coverage of a number of these concepts in some programs/courses. Similarly, many topics relating to the most important EE workforce skills and significant shortages as identified in industry research, do not rate highly in terms of both perceived importance by lecturers, or coverage within existing courses. Overall, these findings suggest that despite growing awareness of the importance of EE in both industry and academia, the current depth and breadth of EE content in courses does not reflect this. It confirms that efforts in these areas can be better supported.
Resumo:
The Energy Efficiency (EE) Graduate Attributes Project focuses on engineering as a priority profession that has a significant role to play in addressing energy demand and supply issues in Australia. Specifically, this project aims to support embedding EE knowledge and skills throughout the engineering undergraduate curriculum, to help build capacity within the Australian workforce across major sectors of the economy, from mining, manufacturing and industrial applications to design, construction, maintenance and retrofitting built environments. The resultant report is intended to assist in future consultation with key groups such as Engineers Australia (EA), the Australian Council of Engineering Deans (ACED) and the eight EA colleges, to support systemic curriculum renewal and promote the design and development of high quality EE engineering education resources. The project is based on a whole-of-program outcomes-based approach to curriculum renewal, creating a transparent framework for integrating EE. This comprises collaborative consideration by academics and professional engineers who have experience in teaching and practising EE, to identify what students should learn to be equipped with relevant competencies by the time they graduate.
Resumo:
Dewatering of microalgal culture is a major bottleneck towards the industrial-scale processing of microalgae for bio-diesel production. The dilute nature of harvested microalgal cultures poses a huge operation cost to dewater; thereby rendering microalgae-based fuels less economically attractive. This study explores the influence of microalgal growth phases and intercellular interactions during cultivation on dewatering efficiency of microalgae cultures. Experimental results show that microalgal cultures harvested during a low growth rate phase (LGRP) of 0.03 d-1 allowed a higher rate of settling than those harvested during a high growth rate phase (HGRP) of 0.11 d-1, even though the latter displayed a higher average differential biomass concentration of 0.2 g L-1 d-1. Zeta potential profile during the cultivation process showed a maximum electronegative value of -43.2 ± 0.7 mV during the HGRP which declined to stabilization at -34.5 ± 0.4 mV in the LGRP. The lower settling rate observed for HGRP microalgae is hence attributed to the high stability of the microalgal cells which electrostatically repel each other during this growth phase. Tangential flow filtration of 20 L HGRP culture concentrated 23 times by consuming 0.51 kWh/m3 of supernatant removed whilst 0.38 kWh/m3 was consumed to concentrate 20 L of LGRP by 48 times.
Resumo:
Embedding metallic nanoparticles in organic solar cells can enhance the photoabsorption through light trapping processes. This paper investigates how gold islands obtained by annealing 1–5 nm thick Au layers affect the photoabsorption. Using finite-difference time-domain simulations, the cell efficiency for various island geometries and thicknesses are analyzed and the properties of the islands for maximal photocurrent are discussed. It is shown that a careful choice of size and concentration of gold islands could contribute to enhance the power conversion efficiencies when compared to standard organic solar cell devices. The conclusions are then compared to experimental data for thermally annealed gold islands in bulk heterojunction solar cells. The results of this paper will contribute to the optimization of plasmonic organic solar cell systems and will pave the way for the development of highly efficient organic solar cell devices.